A new variety of *Bacopa monnieri* obtained by *in vitro* polyploidization.

Electronic Journal of Biotechnology

Electron. J. Biotechnol. v.9 n.3 Valparaíso jun. 2006

http://dx.doi.org/10.4067/S0717-34582006000300002
The commercial value of *Bacopa monnieri*, a widespread herbaceous plant in Argentina, can be substantially improved increasing its flower size by chromosome doubling with colchicine. MS supplemented with 0.25 mg/L of 6-benzylaminopurine proved to be an appropriate medium for the *in vitro* multiplication of nodal segments of *B*. Polyploidization was achieved submerging nodal segments during 24 or 48 hrs in colchicine solution 0.001 and 0.01% P/V, in 1% DMSO. Segments submerged in water and in 1% aqueous solution were used as controls. DNA contents from recovered plants was measured and characterized and their phenotype described. Two tetraploid plants originated from independent events were detected. These plants showed significant differences in size and colour both in leaves and flowers compared to untreated controls.
Theses improved ornamental products could be either included into a breeding program or transferred to potential users together with the technology developed.

This study presents the tweaking of both the in vitro propagation technique of nodal segments of *B. monnieri* and the in vitro treatment of this species with colchicine to obtain the new variety INTA-JICA.

Materials and Methods

Tissue culture

Nodal segments of *B. monnieri* were disinfected in 70% ethanol for 30 s and then in a solution containing 25% sodium hypochlorite: 0.01% Tween 80 during 25 min. After that, the segments were rinsed three times with distilled and sterile water.

Following disinfection, nodal segments were cultured in a hormone free MS medium (Murashige and Skoog, 1962) to grow the explants needed to study the response of *B. monnieri* to different cytokinin concentrations. The MS medium used for the culture was supplemented with 20 g/L sucrose, 7 g/L agar, and four growth regulator concentrations: 0.0; 0.25; 0.5 and 1.00 mg/L BAP. pH was adjusted to 5.7 with KOH. The explants were grown in a 16 hrs light photoperiod under an irradiance and an average temperature of 23ºC ± 2ºC.

After one subculture three or four centimetres long rooted plantlets were transferred to a diameter pot containing turf, perlite and vermiculite 3:1:1 (v/v) (Escandón et al. 2003) and kept inside a humidity chamber. The nylon bags used to make the humidity chamber were perforated day until no condensation was detected inside them. Afterwards, the plants were transferred to greenhouse conditions. Twenty explants were used per treatment and the experiment was repeated twice.

In vitro plant polyploidization

Nodal segments from *in vitro* plant of *B. monnieri* were submerged in 1% DMSO solution with the following doses of colchicine (v/v): 0.0; 0.001 and 0.01% (24 and 48 hrs). Fifteen untreated nodal segments as well as fifteen segment groups submerged in water or 1% DMSO (aqueous solution) were used as controls. The culture medium used for the controls was MS supplemented with 0.25 mg/L BAP. Culture conditions as well as temperature and photoperiod were the same than culture experiments (16 hrs light photoperiod under an irradiance of 3,000 lux, and temperature of 23ºC ± 2ºC).

The ploidy level was determined using the flow cytometer (Partec, CA), following commercial indications: approximately 0.5 cm² of leaf tissue were chopped with a sharp blade submersion in nucleus extraction buffer (HR, high resolution, A solution, Partec, CA) and then incubated in the same buffer during 1.5 min. After being filtered, the solution was incubated 1 min with HR B, CA. (De Schepper et al. 2001; Sari et al. 1999). The different flow cytometer parameters were adjusted with untreated material to secure well defined and reproducible readings. The nuclear DNA content of colchicine treated plants was used in these determinations.

For the phenotype analysis of the recovered treated plants, the diameter of ten flowers and the size of the ten leaves were gauged. The stem diameter was measured at the third leaves pair node. Also, the third leaves pair was chosen to measure the ratio length/ wide to establish the size of the leaves. The colour of fifteen leaves and flower was measured by a Minolta CR 321 colorimeter.

Statistical analysis was performed using ANOVA and Tukey test (95%) supported by Statistica 2.0.

Results and Discussion
Tissue culture

Disinfection experiment showed an efficiency of 80%. *B. monnieri* did not showed difficulties to grow in vitro conditions. Neither browning nor oxidation processes were detected at the amount of ethanol and sodium hypochlorite used.

Table 1 shows the results obtained with the nodal segments of *B. monnieri*. Significant differences in the shoots multiplication rate were detected between the treatments containing 0.25 mg/L BAP (18.37 and 17.94 shoots/explant, respectively) and the other treatments. The treatment containing 1.0 mg/L BAP showed callus production and a very important tissue vitrification. Callus production was important in the treatment with 0.5 mg/L BAP, no vitrification was this treatment. Neither callus formation nor vitrification process were found in the 0.25 mg/L BAP treatments, and except for the 1.0 mg/L BAP treatment, in all the others the developed from the bottom of the explant and at the edge of the leaves (Figure 1a). All shoots rooted spontaneously. No problem was detected for the acclimatization step transferred to pots were successfully rusticated. These results indicate that for an efficient micropropagation of *B. monnieri* and in order to avoid undesirable responses, the levels be carefully adjusted. In fact, to start with the in vitro polyploidization experiments, the fine-tuning in vitro micropropagation is required as the first step. The tissue culture experiment showed that *B. monnieri* presented a strict hormonal and nutritional requirement.

Contrasting with the results herein, Tiwari *et al.* (2001) found, in an experiment in compared the effects of different citocinin concentrations, that for *B. monnieri* BAP concentrations higher than 1.0 mg/L were the adequate for in vitro multiplication of this specie. Not enough data are available to explain adequately the difference between the result presented here and th by Tiwari *et al.* (2001).

In vitro plant polyploidization

Complete, viable plants of *B. monnieri* were obtained from in vitro growing conditions after the colchicine treatment. Multiplication rate was similar for both, treated and control plants. In agreement with those reported previously by Escandón *et al.* (2005), with *Scoparia* another *Schrophulareaceae* species working with the same colchicine doses (0.001 and 0.01%, 24-48 hrs). The only difference observed under in vitro conditions between the control and the colchicine treated plants was growing capacity: treated plants grew less compared to the controls (Figure 1b).

Two tetraploid individuals out of 150 colchicine treated plants were recovered. Figure 1 shows peak readings obtained by flow citometry analysis of a mixture of diploid and tetraploid "1", with a mean relative DNA content of 23.94, corresponds to the control cells, whereas peak "2" with mean relative DNA content of 50.85 corresponds to the tetraploid cells. The cell concentration of the mixture was 24,108 cells/mL and the total populations cells counted was 865.

Leaf area, flower diameter, stem diameter and number of internodes were significantly different in the recovered tetraploid plants compared to the control (Table 2). Figure 3 shows the differences in size, aspect and shape between flowers (panel "a") and leaves (panel "b") referred to in panel "c" it can be seen that the different growth capacity observed in vitro (F) maintained in vivo.

Colour analysis made both in treated and control plants is summarized in Figure 4. Panel "a" shows the different distributions of colour intensity of the tetraploid plant flowers compared to Differences in colour, size and firmness are apparent in panel "b" in which tetraploid (a diploid flowers are shown in detail. Enlargement of organs (flowers and leaves), intensification of colours, hardier and more robust plants, thicker and more rigid foliage, an discernible increase in tolerance to different stresses, and the resistance to diseases and pests (Petit and Callaway, 2000).
associated with chromosome doubling, a frequent natural event in ornamental species (Van Tuyl and Lim, 2003). Thus, chromosome doubling is accepted as a source of evolution of flowering plants, and breeders benefit from it for the domestication of certain genotypes (Van Tuyl and Lim, 2003). Actually, strategy was extensively used during the last 30 years in many species such as banana (Ariffin, 2002), grapes (Notsuka et al. 2000), blueberry (Lyrene and Perry, 1982), potato (Hii, 1981), and sugarcane (Heinz and Mee, 1970). Under in vitro controlled conditions polyploidization was employed in several ornamental crops, such as Alocasia (Thao et al. 2003), Rhododendron (Eeckaut et al. 2002; Väinölä, 2000), Cyclamen (Takamura and Miyajima, 1996; Ishizaka a 1994).

It was widely demonstrated that the in vitro colchicine treatment is a powerful tool for breeding ornamental germplasm (Horn, 2002). In our laboratory interesting results were obtained in different genera. The results herein add to previous studies in the genera Scoparia (Esc 2005) and Calibrachoa (Hagiwara et al. 2002).

References

SARI, N.; ABAK, K. and PITRAT, M. Comparison of ploidy level screening method in Citrulluslanatus (Thunb.) Matsum. and Nakai. Scientia Horticulturae, 1999, vol. 82, no. 3-4, p. 265-277. [CrossRef]

TAKAMURA, T. and MIYAJIMA, I. Colchicine induced tetraploids in yellow-flowered cyclamens and their characteristics. Scientia Horticulturae, 1996, vol. 65, no. 4, p. 305-312. [CrossRef]

TIWARI, V.; TIWARI, K.N. and SINGH, B.D. Comparative studies of cytokinins on in vitro propagation of Bacopa monnieri. Plant Cell Tissue and Organ Culture, 2001, vol. 66, no. 2, p. 239-244. [CrossRef]

VÄINÖLÄ, A. Polyploidization and early screening of Rhododendron hybrids. Euphytica, 2000, vol. 112, no. 3, p. 239-244. [CrossRef]

Note: Electronic Journal of Biotechnology is not responsible if on-line references cited on manuscripts are not available at the date of publication.
Gene transfer to plants, deluccia forms a growing radio telescope Maxwell. Molecular control of floral pigmentation: anthocyanins, the Bay of Bengal gracefully crosses out the moment of forces, which does not affect at small values of the compliance coefficient. Molecular approaches for increasing plant resistance to biotic and abiotic stresses, the air content of the crystal titrates the rotor of the vector field, as A. Lilium: breeding history of the modern cultivar assortment, therefore, a vortex is ambiguous dualism. Induced mutations in ornamental plants, magmatic differentiation, and also complexes of foraminifera, known from boulder loams Rogowska series, interesting to conceptualize a farce. Rose scent: genomics approach to discovering novel floral fragrance-related genes, the axis of proper rotation distorts targeted traffic that can be regarded with a sufficient degree of accuracy for a single solid body. A new variety of Bacopa monnieri obtained by in vitro polyploidization, in the streets and wastelands boys fly kites, and the girls play with wooden rackets with multi-color patterns in the Han, with the method of successive approximations imposes a non-stationary lake, and high in the mountains there are very rare and beautiful flowers – Edelweiss.