
The C programming language.

C (programming language)
C

The C Programming Language[1] (often referred
to as "K&R"), the seminal book on C

Paradigm Imperative (procedural),
structured

Designed by Dennis Ritchie

Developer

Dennis Ritchie & Bell Labs
(creators); ANSI X3J11 (ANSI C);
ISO/IEC JTC1/SC22/WG14 (ISO
C)

First appeared 1972[2]

Stable release C11 / December 2011

Typing
discipline

Static, weak, manifest, nominal

OS Cross-platform

Filename
extensions

.c, .h

Major implementations
GCC, Clang, Intel C, MSVC, Pelles C, Watcom C

Dialects
Cyclone, Unified Parallel C, Split-C, Cilk, C*

Influenced by

B (BCPL, CPL), ALGOL 68,[3] Assembly, PL/I,
FORTRAN

Influenced
Numerous: AMPL, AWK, csh, C++, C--, C#,

Objective-C, BitC, D, Go, Java, JavaScript, Julia,

#
#cite_note-k.26r1e-1
#
#
#
#
#
#
#
#
#
#
#cite_note-dottcl_2-2
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#cite_note-dottcl-3
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
http://blogttn.info/dspace/mx/VGhlIEMgcHJvZ3JhbW1pbmcgbGFuZ3VhZ2U=

Limbo, LPC, Perl, PHP, Pike, Processing,
Python, Rust, Seed7, Vala, Verilog (HDL)[4]

 C Programming at Wikibooks

C (/�si�/, as in the letter c) is a general-purpose, imperative computer
programming language, supporting structured programming, lexical variable
scope and recursion, while a static type system prevents many unintended
operations. By design, C provides constructs that map efficiently to typical
machine instructions, and therefore it has found lasting use in applications
that had formerly been coded in assembly language, including operating
systems, as well as various application software for computers ranging from
supercomputers to embedded systems.

C was originally developed by Dennis Ritchie between 1969 and 1973 at Bell
Labs,[5] and used to re-implement the Unix operating system.[6] It has since
become one of the most widely used programming languages of all time,[7][8]

with C compilers from various vendors available for the majority of existing
computer architectures and operating systems. C has been standardized by
the American National Standards Institute (ANSI) since 1989 (see ANSI C)
and subsequently by the International Organization for Standardization
(ISO).

Design

C is an imperative procedural language. It was designed to be compiled using
a relatively straightforward compiler, to provide low-level access to memory,
to provide language constructs that map efficiently to machine instructions,
and to require minimal run-time support. Therefore, C was useful for many
applications that had formerly been coded in assembly language, for example
in system programming.

Despite its low-level capabilities, the language was designed to encourage
cross-platform programming. A standards-compliant and portably written C
program can be compiled for a very wide variety of computer platforms and
operating systems with few changes to its source code. The language has
become available on a very wide range of platforms, from embedded
microcontrollers to supercomputers.

Overview

Like most imperative languages in the ALGOL tradition, C has facilities for
structured programming and allows lexical variable scope and recursion,
while a static type system prevents many unintended operations. In C, all

#
#
#
#
#
#
#
#
#
#
#
#cite_note-vinsp-4
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#cite_note-chistory-5
#
#cite_note-AutoTX-1-6
#
#cite_note-AutoTX-2-7
#cite_note-AutoTX-3-8
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

executable code is contained within subroutines, which are called
"functions" (although not in the strict sense of functional programming).
Function parameters are always passed by value. Pass-by-reference is
simulated in C by explicitly passing pointer values. C program source text is
free-format, using the semicolon as a statement terminator and curly braces
for grouping blocks of statements.

The C language also exhibits the following characteristics:

There is a small, fixed number of keywords, including a full set of flow of
control primitives: for, if/else, while, switch, and do/while. User-defined
names are not distinguished from keywords by any kind of sigil.
There are a large number of arithmetical and logical operators, such as +,
+=, ++, &, ~, etc.
More than one assignment may be performed in a single statement.
Function return values can be ignored when not needed.
Typing is static, but weakly enforced: all data has a type, but implicit
conversions may be performed.
Declaration syntax mimics usage context. C has no "define" keyword;
instead, a statement beginning with the name of a type is taken as a
declaration. There is no "function" keyword; instead, a function is
indicated by the parentheses of an argument list.
User-defined (typedef) and compound types are possible.

Heterogeneous aggregate data types (struct) allow related data
elements to be accessed and assigned as a unit.
Array indexing is a secondary notation, defined in terms of pointer
arithmetic. Unlike structs, arrays are not first-class objects; they
cannot be assigned or compared using single built-in operators.
There is no "array" keyword, in use or definition; instead, square
brackets indicate arrays syntactically, for example month[11].
Enumerated types are possible with the enum keyword. They are
not tagged, and are freely interconvertible with integers.
Strings are not a separate data type, but are conventionally
implemented as null-terminated arrays of characters.

Low-level access to computer memory is possible by converting
machine addresses to typed pointers.
Procedures (subroutines not returning values) are a special case of
function, with an untyped return type void.
Functions may not be defined within the lexical scope of other
functions.
Function and data pointers permit ad hoc run-time polymorphism.
A preprocessor performs macro definition, source code file inclusion,
and conditional compilation.
There is a basic form of modularity: files can be compiled separately and
linked together, with control over which functions and data objects are
visible to other files via static and extern attributes.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Complex functionality such as I/O, string manipulation, and
mathematical functions are consistently delegated to library routines.

While C does not include some features found in some other languages, such
as object orientation or garbage collection, such features can be implemented
or emulated in C, often by way of external libraries (e.g., the Boehm garbage
collector or the GLib Object System).

Relations to other languages

Many later languages have borrowed directly or indirectly from C, including
C++, D, Go, Rust, Java, JavaScript, Limbo, LPC, C#, Objective-C, Perl, PHP,
Python, Swift, Verilog (hardware description language),[4] and Unix's C shell.
These languages have drawn many of their control structures and other basic
features from C. Most of them (with Python being the most dramatic
exception) are also very syntactically similar to C in general, and they tend to
combine the recognizable expression and statement syntax of C with
underlying type systems, data models, and semantics that can be radically
different.

History

Early developments

Ken Thompson (left) with
Dennis Ritchie (right, the
inventor of the C
programming language)

The origin of C is closely tied to the development of the Unix operating
system, originally implemented in assembly language on a PDP-7 by Ritchie
and Thompson, incorporating several ideas from colleagues. Eventually, they
decided to port the operating system to a PDP-11. The original PDP-11
version of Unix was developed in assembly language. The developers were
considering rewriting the system using the B language, Thompson's
simplified version of BCPL.[9] However B's inability to take advantage of some
of the PDP-11's features, notably byte addressability, led to C. The name of C

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#cite_note-vinsp-4
#
#
#
#
#
#
#
#
#
#
#
#
#cite_note-sigplan-9
#

was chosen simply as the next after B.[10]

The development of C started in 1972 on the PDP-11 Unix system[11] and first
appeared in Version 2 Unix.[12] The language was not initially designed with
portability in mind, but soon ran on different platforms as well: a compiler for
the Honeywell 6000 was written within the first year of C's history, while an
IBM System/370 port followed soon.[1][11]

Also in 1972, a large part of Unix was rewritten in C.[13] By 1973, with the
addition of struct types, the C language had become powerful enough that
most of the Unix's kernel was now in C.

Unix was one of the first operating system kernels implemented in a language
other than assembly. Earlier instances include the Multics system which was
written in PL/I), and Master Control Program (MCP) for the Burroughs B5000
written in ALGOL in 1961. In around 1977, Ritchie and Stephen C. Johnson
made further changes to the language to facilitate portability of the Unix
operating system. Johnson's Portable C Compiler served as the basis for
several implementations of C on new platforms.[11]

K&R C

The cover of the book,
The C Programming
Language, first edition
by Brian Kernighan and
Dennis Ritchie

In 1978, Brian Kernighan and Dennis Ritchie published the first edition of
The C Programming Language.[1] This book, known to C programmers as
"K&R", served for many years as an informal specification of the language.
The version of C that it describes is commonly referred to as K&R C. The

#cite_note-10
#cite_note-unixport-11
#
#cite_note-12
#
#
#cite_note-k.26r1e-1
#cite_note-unixport-11
#cite_note-Stallings-13
#
#
#
#
#
#
#
#
#
#
#cite_note-unixport-11
#
#
#
#
#
#cite_note-k.26r1e-1
#

second edition of the book[14] covers the later ANSI C standard, described
below.

K&R introduced several language features:

Standard I/O library
long int data type
unsigned int data type
Compound assignment operators of the form =op (such as =-) were
changed to the form op= (that is, -=) to remove the semantic ambiguity
created by constructs such as i=-10, which had been interpreted as i =- 10

(decrement i by 10) instead of the possibly intended i = -10 (let i be -10).

Even after the publication of the 1989 ANSI standard, for many years K&R C
was still considered the "lowest common denominator" to which C
programmers restricted themselves when maximum portability was desired,
since many older compilers were still in use, and because carefully written
K&R C code can be legal Standard C as well.

In early versions of C, only functions that return types other than int must be
declared if used before the function definition; functions used without prior
declaration were presumed to return type int.

For example:

long some_function();
/* int */ other_function();

/* int */ calling_function()
{
 long test1;
 register /* int */ test2;

 test1 = some_function();
 if (test1 > 0)
 test2 = 0;
 else
 test2 = other_function();
 return test2;
}

The int type specifiers which are commented out could be omitted in K&R C,
but are required in later standards.

Since K&R function declarations did not include any information about
function arguments, function parameter type checks were not performed,
although some compilers would issue a warning message if a local function
was called with the wrong number of arguments, or if multiple calls to an
external function used different numbers or types of arguments. Separate

#cite_note-k.26r2e-14
#
#
#

tools such as Unix's lint utility were developed that (among other things)
could check for consistency of function use across multiple source files.

In the years following the publication of K&R C, several features were added
to the language, supported by compilers from AT&T (in particular PCC[15])
and some other vendors. These included:

void functions (i.e., functions with no return value)
functions returning struct or union types (rather than pointers)
assignment for struct data types
enumerated types

The large number of extensions and lack of agreement on a standard library,
together with the language popularity and the fact that not even the Unix
compilers precisely implemented the K&R specification, led to the necessity
of standardization.

ANSI C and ISO C

Main article: ANSI C

The cover of the book,
The C Programming
Language, second edition
by Brian Kernighan and
Dennis Ritchie covering
ANSI C

During the late 1970s and 1980s, versions of C were implemented for a wide
variety of mainframe computers, minicomputers, and microcomputers,
including the IBM PC, as its popularity began to increase significantly.

In 1983, the American National Standards Institute (ANSI) formed a
committee, X3J11, to establish a standard specification of C. X3J11 based the

#
#
#cite_note-15
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

C standard on the Unix implementation; however, the non-portable portion
of the Unix C library was handed off to the IEEE working group 1003 to
become the basis for the 1988 POSIX standard. In 1989, the C standard was
ratified as ANSI X3.159-1989 "Programming Language C". This version of the
language is often referred to as ANSI C, Standard C, or sometimes C89.

In 1990, the ANSI C standard (with formatting changes) was adopted by the
International Organization for Standardization (ISO) as ISO/IEC 9899:1990,
which is sometimes called C90. Therefore, the terms "C89" and "C90" refer to
the same programming language.

ANSI, like other national standards bodies, no longer develops the C standard
independently, but defers to the international C standard, maintained by the
working group ISO/IEC JTC1/SC22/WG14. National adoption of an update to
the international standard typically occurs within a year of ISO publication.

One of the aims of the C standardization process was to produce a superset
of K&R C, incorporating many of the subsequently introduced unofficial
features. The standards committee also included several additional features
such as function prototypes (borrowed from C++), void pointers, support for
international character sets and locales, and preprocessor enhancements.
Although the syntax for parameter declarations was augmented to include
the style used in C++, the K&R interface continued to be permitted, for
compatibility with existing source code.

C89 is supported by current C compilers, and most C code being written
today is based on it. Any program written only in Standard C and without any
hardware-dependent assumptions will run correctly on any platform with a
conforming C implementation, within its resource limits. Without such
precautions, programs may compile only on a certain platform or with a
particular compiler, due, for example, to the use of non-standard libraries,
such as GUI libraries, or to a reliance on compiler- or platform-specific
attributes such as the exact size of data types and byte endianness.

In cases where code must be compilable by either standard-conforming or
K&R C-based compilers, the __STDC__ macro can be used to split the code
into Standard and K&R sections to prevent the use on a K&R C-based
compiler of features available only in Standard C.

After the ANSI/ISO standardization process, the C language specification
remained relatively static for several years. In 1995, Normative Amendment 1
to the 1990 C standard (ISO/IEC 9899/AMD1:1995, known informally as C95)
was published, to correct some details and to add more extensive support for
international character sets.

C99

#
#
#
#
#
#
#
#
#
#
#
#
#
#

Main article: C99

The C standard was further revised in the late 1990s, leading to the
publication of ISO/IEC 9899:1999 in 1999, which is commonly referred to as
"C99". It has since been amended three times by Technical Corrigenda.[16]

C99 introduced several new features, including inline functions, several new
data types (including long long int and a complex type to represent complex
numbers), variable-length arrays and flexible array members, improved
support for IEEE 754 floating point, support for variadic macros (macros of
variable arity), and support for one-line comments beginning with //, as in
BCPL or C++. Many of these had already been implemented as extensions in
several C compilers.

C99 is for the most part backward compatible with C90, but is stricter in
some ways; in particular, a declaration that lacks a type specifier no longer
has int implicitly assumed. A standard macro __STDC_VERSION__ is defined
with value 199901L to indicate that C99 support is available. GCC, Solaris
Studio, and other C compilers now support many or all of the new features of
C99. The C compiler in Microsoft Visual C++, however, implements the C89
standard and those parts of C99 that are required for compatibility with
C++11.[17]

C11

Main article: C11 (C standard revision)

In 2007, work began on another revision of the C standard, informally called
"C1X" until its official publication on 2011-12-08. The C standards committee
adopted guidelines to limit the adoption of new features that had not been
tested by existing implementations.

The C11 standard adds numerous new features to C and the library, including
type generic macros, anonymous structures, improved Unicode support,
atomic operations, multi-threading, and bounds-checked functions. It also
makes some portions of the existing C99 library optional, and improves
compatibility with C++. The standard macro __STDC_VERSION__ is defined as
201112L to indicate that C11 support is available.

Embedded C

Main article: Embedded C

Historically, embedded C programming requires nonstandard extensions to
the C language in order to support exotic features such as fixed-point
arithmetic, multiple distinct memory banks, and basic I/O operations.

#
#
#cite_note-AutoTX-5-16
#
#
#
#
#
#
#
#
#
#
#
#
#
#cite_note-17
#
#

In 2008, the C Standards Committee published a technical report extending
the C language[18] to address these issues by providing a common standard
for all implementations to adhere to. It includes a number of features not
available in normal C, such as fixed-point arithmetic, named address spaces,
and basic I/O hardware addressing.

Syntax

Main article: C syntax

C has a formal grammar specified by the C standard.[19] Line endings are
generally not significant in C; however, line boundaries do have significance
during the preprocessing phase. Comments may appear either between the
delimiters /* and */, or (since C99) following // until the end of the line.
Comments delimited by /* and */ do not nest, and these sequences of
characters are not interpreted as comment delimiters if they appear inside
string or character literals.[20]

C source files contain declarations and function definitions. Function
definitions, in turn, contain declarations and statements. Declarations either
define new types using keywords such as struct, union, and enum, or assign
types to and perhaps reserve storage for new variables, usually by writing the
type followed by the variable name. Keywords such as char and int specify
built-in types. Sections of code are enclosed in braces ({ and }, sometimes
called "curly brackets") to limit the scope of declarations and to act as a single
statement for control structures.

As an imperative language, C uses statements to specify actions. The most
common statement is an expression statement, consisting of an expression to
be evaluated, followed by a semicolon; as a side effect of the evaluation,
functions may be called and variables may be assigned new values. To modify
the normal sequential execution of statements, C provides several control-
flow statements identified by reserved keywords. Structured programming is
supported by if(-else) conditional execution and by do-while, while, and for

iterative execution (looping). The for statement has separate initialization,
testing, and reinitialization expressions, any or all of which can be omitted.
break and continue can be used to leave the innermost enclosing loop
statement or skip to its reinitialization. There is also a non-structured goto

statement which branches directly to the designated label within the
function. switch selects a case to be executed based on the value of an integer
expression.

Expressions can use a variety of built-in operators and may contain function
calls. The order in which arguments to functions and operands to most
operators are evaluated is unspecified. The evaluations may even be

#cite_note-AutoTX-6-18
#
#
#
#cite_note-h.26s5e-19
#
#cite_note-KandR1-20
#
#
#
#
#
#

interleaved. However, all side effects (including storage to variables) will occur
before the next "sequence point"; sequence points include the end of each
expression statement, and the entry to and return from each function call.
Sequence points also occur during evaluation of expressions containing
certain operators (&&, ||, ?: and the comma operator). This permits a high
degree of object code optimization by the compiler, but requires C
programmers to take more care to obtain reliable results than is needed for
other programming languages.

Kernighan and Ritchie say in the Introduction of The C Programming
Language: "C, like any other language, has its blemishes. Some of the
operators have the wrong precedence; some parts of the syntax could be
better."[21] The C standard did not attempt to correct many of these
blemishes, because of the impact of such changes on already existing
software.

Character set

The basic C source character set includes the following characters:

Lowercase and uppercase letters of ISO Basic Latin Alphabet: a–z A–Z

Decimal digits: 0–9

Graphic characters: ! " # % & ' () * + , - . / : ; < = > ? [\] ^ _ { | } ~

Whitespace characters: space, horizontal tab, vertical tab, form feed,
newline

Newline indicates the end of a text line; it need not correspond to an actual
single character, although for convenience C treats it as one.

Additional multi-byte encoded characters may be used in string literals, but
they are not entirely portable. The latest C standard (C11) allows multi-
national Unicode characters to be embedded portably within C source text
by using \uXXXX or \UXXXXXXXX encoding (where the X denotes a hexadecimal
character), although this feature is not yet widely implemented.

The basic C execution character set contains the same characters, along with
representations for alert, backspace, and carriage return. Run-time support
for extended character sets has increased with each revision of the C
standard.

Reserved words

C89 has 32 reserved words, also known as keywords, which are the words that
cannot be used for any purposes other than those for which they are
predefined:

auto double int struct

#
#
#
#cite_note-21
#
#
#
#
#
#
#
#
#
#
#
#
#

auto
break
case
char
const
continue
default
do

double
else
enum
extern
float
for
goto
if

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

C99 reserved five more words:

_Bool
_Complex

_Imaginary
inline

restrict

C11 reserved seven more words:[22]

_Alignas
_Alignof

_Atomic
_Generic

_Noreturn
_Static_assert

_Thread_local

Most of the recently reserved words begin with an underscore followed by a
capital letter, because identifiers of that form were previously reserved by the
C standard for use only by implementations. Since existing program source
code should not have been using these identifiers, it would not be affected
when C implementations started supporting these extensions to the
programming language. Some standard headers do define more convenient
synonyms for underscored identifiers. The language previously included a
reserved word called entry, but this was seldom implemented, and has now
been removed as a reserved word.[23]

Operators

Main article: Operators in C and C++

C supports a rich set of operators, which are symbols used within an
expression to specify the manipulations to be performed while evaluating
that expression. C has operators for:

arithmetic: +, -, *, /, %
assignment: =
augmented assignment: +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=

bitwise logic: ~, &, |, ^
bitwise shifts: <<, >>

boolean logic: !, &&, ||
conditional evaluation: ? :

equality testing: ==, !=
calling functions: ()

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#cite_note-AutoTX-7-22
#cite_note-KandR2-23
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

increment and decrement: ++, --

member selection: ., ->

object size: sizeof

order relations: <, <=, >, >=

reference and dereference: &, *, []
sequencing: ,
subexpression grouping: ()

type conversion: (typename)

C uses the operator = (used in mathematics to express equality) to indicate
assignment, following the precedent of Fortran and PL/I, but unlike ALGOL
and its derivatives. C uses the operator == to test for equality. The similarity
between these two operators (assignment and equality) may result in the
accidental use of one in place of the other, and in many cases, the mistake
does not produce an error message (although some compilers produce
warnings). For example, the conditional expression if(a==b+1) might
mistakenly be written as if(a=b+1), which will be evaluated as true if a is not
zero after the assignment.[24]

The C operator precedence is not always intuitive. For example, the operator
== binds more tightly than (is executed prior to) the operators & (bitwise
AND) and | (bitwise OR) in expressions such as x & 1 == 0, which must be
written as (x & 1) == 0 if that is the coder's intent.[25]

"Hello, world" example

The "hello, world" example, which appeared in the first edition of K&R, has
become the model for an introductory program in most programming
textbooks, regardless of programming language. The program prints "hello,
world" to the standard output, which is usually a terminal or screen display.

The original version was:[26]

main()
{
 printf("hello, world\n");
}

A standard-conforming "hello, world" program is:[lower-alpha 1]

#include <stdio.h>

int main(void)
{
 printf("hello, world\n");
}

#
#
#
#
#
#
#
#
#
#
#
#cite_note-AutoTX-8-24
#
#cite_note-AutoTX-9-25
#
#
#
#cite_note-26
#cite_note-27

The first line of the program contains a preprocessing directive, indicated by
#include. This causes the compiler to replace that line with the entire text of
the stdio.h standard header, which contains declarations for standard input
and output functions such as printf. The angle brackets surrounding stdio.h

indicate that stdio.h is located using a search strategy that prefers headers
provided with the compiler to other headers having the same name, as
opposed to double quotes which typically include local or project-specific
header files.

The next line indicates that a function named main is being defined. The main

function serves a special purpose in C programs; the run-time environment
calls the main function to begin program execution. The type specifier int

indicates that the value that is returned to the invoker (in this case the run-
time environment) as a result of evaluating the main function, is an integer.
The keyword void as a parameter list indicates that this function takes no
arguments.[lower-alpha 2]

The opening curly brace indicates the beginning of the definition of the main

function.

The next line calls (diverts execution to) a function named printf, which in
this case is supplied from a system library. In this call, the printf function is
passed (provided with) a single argument, the address of the first character in
the string literal "hello, world\n". The string literal is an unnamed array with
elements of type char, set up automatically by the compiler with a final 0-
valued character to mark the end of the array (printf needs to know this). The
\n is an escape sequence that C translates to a newline character, which on
output signifies the end of the current line. The return value of the printf

function is of type int, but it is silently discarded since it is not used. (A more
careful program might test the return value to determine whether or not the
printf function succeeded.) The semicolon ; terminates the statement.

The closing curly brace indicates the end of the code for the main function.
According to the C99 specification and newer, the main function, unlike any
other function, will implicitly return a value of 0 upon reaching the } that
terminates the function. This is interpreted by the run-time system as an exit
code indicating successful execution.[27]

Data types

Main article: C variable types and declarations

The type system in C is static and weakly typed, which makes it similar to the
type system of ALGOL descendants such as Pascal.[28] There are built-in types
for integers of various sizes, both signed and unsigned, floating-point

#
#
#
#cite_note-28
#
#
#
#
#
#
#cite_note-bk21st-29
#
#
#
#
#
#
#cite_note-30
#

numbers, and enumerated types (enum). Integer type char is often used for
single-byte characters. C99 added a boolean datatype. There are also derived
types including arrays, pointers, records (struct), and untagged unions (union).

C is often used in low-level systems programming where escapes from the
type system may be necessary. The compiler attempts to ensure type
correctness of most expressions, but the programmer can override the checks
in various ways, either by using a type cast to explicitly convert a value from
one type to another, or by using pointers or unions to reinterpret the
underlying bits of a data object in some other way.

Some find C's declaration syntax unintuitive, particularly for function
pointers. (Ritchie's idea was to declare identifiers in contexts resembling
their use: "declaration reflects use".)[29]

C's usual arithmetic conversions allow for efficient code to be generated, but
can sometimes produce unexpected results. For example, a comparison of
signed and unsigned integers of equal width requires a conversion of the
signed value to unsigned. This can generate unexpected results if the signed
value is negative.

Pointers

C supports the use of pointers, a type of reference that records the address or
location of an object or function in memory. Pointers can be dereferenced to
access data stored at the address pointed to, or to invoke a pointed-to
function. Pointers can be manipulated using assignment or pointer
arithmetic. The run-time representation of a pointer value is typically a raw
memory address (perhaps augmented by an offset-within-word field), but
since a pointer's type includes the type of the thing pointed to, expressions
including pointers can be type-checked at compile time. Pointer arithmetic
is automatically scaled by the size of the pointed-to data type. Pointers are
used for many purposes in C. Text strings are commonly manipulated using
pointers into arrays of characters. Dynamic memory allocation is performed
using pointers. Many data types, such as trees, are commonly implemented
as dynamically allocated struct objects linked together using pointers. Pointers
to functions are useful for passing functions as arguments to higher-order
functions (such as qsort or bsearch) or as callbacks to be invoked by event
handlers.[27]

A null pointer value explicitly points to no valid location. Dereferencing a null
pointer value is undefined, often resulting in a segmentation fault. Null
pointer values are useful for indicating special cases such as no "next" pointer
in the final node of a linked list, or as an error indication from functions
returning pointers. In appropriate contexts in source code, such as for
assigning to a pointer variable, a null pointer constant can be written as 0,

#
#
#
#
#
#
#
#
#
#cite_note-31
#
#
#
#
#
#
#
#
#
#
#cite_note-bk21st-29
#
#
#

with or without explicit casting to a pointer type, or as the NULL macro
defined by several standard headers. In conditional contexts, null pointer
values evaluate to false, while all other pointer values evaluate to true.

Void pointers (void *) point to objects of unspecified type, and can therefore
be used as "generic" data pointers. Since the size and type of the pointed-to
object is not known, void pointers cannot be dereferenced, nor is pointer
arithmetic on them allowed, although they can easily be (and in many
contexts implicitly are) converted to and from any other object pointer
type.[27]

Careless use of pointers is potentially dangerous. Because they are typically
unchecked, a pointer variable can be made to point to any arbitrary location,
which can cause undesirable effects. Although properly used pointers point
to safe places, they can be made to point to unsafe places by using invalid
pointer arithmetic; the objects they point to may continue to be used after
deallocation (dangling pointers); they may be used without having been
initialized (wild pointers); or they may be directly assigned an unsafe value
using a cast, union, or through another corrupt pointer. In general, C is
permissive in allowing manipulation of and conversion between pointer
types, although compilers typically provide options for various levels of
checking. Some other programming languages address these problems by
using more restrictive reference types.

Arrays

See also: C string

Array types in C are traditionally of a fixed, static size specified at compile
time. (The more recent C99 standard also allows a form of variable-length
arrays.) However, it is also possible to allocate a block of memory (of arbitrary
size) at run-time, using the standard library's malloc function, and treat it as
an array. C's unification of arrays and pointers means that declared arrays
and these dynamically allocated simulated arrays are virtually
interchangeable.

Since arrays are always accessed (in effect) via pointers, array accesses are
typically not checked against the underlying array size, although some
compilers may provide bounds checking as an option.[30] Array bounds
violations are therefore possible and rather common in carelessly written
code, and can lead to various repercussions, including illegal memory
accesses, corruption of data, buffer overruns, and run-time exceptions. If
bounds checking is desired, it must be done manually.

C does not have a special provision for declaring multi-dimensional arrays,
but rather relies on recursion within the type system to declare arrays of

#cite_note-bk21st-29
#
#
#
#
#
#
#
#cite_note-AutoTX-10-32
#
#
#

arrays, which effectively accomplishes the same thing. The index values of the
resulting "multi-dimensional array" can be thought of as increasing in row-
major order.

Multi-dimensional arrays are commonly used in numerical algorithms
(mainly from applied linear algebra) to store matrices. The structure of the C
array is well suited to this particular task. However, since arrays are passed
merely as pointers, the bounds of the array must be known fixed values or
else explicitly passed to any subroutine that requires them, and dynamically
sized arrays of arrays cannot be accessed using double indexing. (A
workaround for this is to allocate the array with an additional "row vector" of
pointers to the columns.)

C99 introduced "variable-length arrays" which address some, but not all, of
the issues with ordinary C arrays.

Array–pointer interchangeability

The subscript notation x[i] (where x designates a pointer) is syntactic sugar for
*(x+i).[31] Taking advantage of the compiler's knowledge of the pointer type,
the address that x + i points to is not the base address (pointed to by x)
incremented by i bytes, but rather is defined to be the base address
incremented by i multiplied by the size of an element that x points to. Thus,
x[i] designates the i+1th element of the array.

Furthermore, in most expression contexts (a notable exception is as operand
of sizeof), the name of an array is automatically converted to a pointer to the
array's first element. This implies that an array is never copied as a whole
when named as an argument to a function, but rather only the address of its
first element is passed. Therefore, although function calls in C use pass-by-
value semantics, arrays are in effect passed by reference.

The size of an element can be determined by applying the operator sizeof to
any dereferenced element of x, as in n = sizeof *x or n = sizeof x[0], and the number
of elements in a declared array A can be determined as sizeof A / sizeof A[0]. The
latter only applies to array names: variables declared with subscripts (int A[20]).
Due to the semantics of C, it is not possible to determine the entire size of
arrays through pointers to arrays or those created by dynamic allocation
(malloc); code such as sizeof arr / sizeof arr[0] (where arr designates a pointer) will
not work since the compiler assumes the size of the pointer itself is being
requested.[32][33] Since array name arguments to sizeof are not converted to
pointers, they do not exhibit such ambiguity. However, arrays created by
dynamic allocation are accessed by pointers rather than true array variables,
so they suffer from the same sizeof issues as array pointers.

Thus, despite this apparent equivalence between array and pointer variables,

#
#
#
#cite_note-Raymond1996-33
#
#
#
#
#cite_note-cfaq623-34
#cite_note-cfaq728-35

there is still a distinction to be made between them. Even though the name
of an array is, in most expression contexts, converted into a pointer (to its
first element), this pointer does not itself occupy any storage; the array name
is not an l-value, and its address is a constant, unlike a pointer variable.
Consequently, what an array "points to" cannot be changed, and it is
impossible to assign a new address to an array name. Array contents may be
copied, however, by using the memcpy function, or by accessing the individual
elements.

Memory management

One of the most important functions of a programming language is to
provide facilities for managing memory and the objects that are stored in
memory. C provides three distinct ways to allocate memory for objects:[27]

Static memory allocation: space for the object is provided in the binary
at compile-time; these objects have an extent (or lifetime) as long as the
binary which contains them is loaded into memory.
Automatic memory allocation: temporary objects can be stored on the
stack, and this space is automatically freed and reusable after the block
in which they are declared is exited.
Dynamic memory allocation: blocks of memory of arbitrary size can be
requested at run-time using library functions such as malloc from a
region of memory called the heap; these blocks persist until
subsequently freed for reuse by calling the library function realloc or free

These three approaches are appropriate in different situations and have
various trade-offs. For example, static memory allocation has little allocation
overhead, automatic allocation may involve slightly more overhead, and
dynamic memory allocation can potentially have a great deal of overhead for
both allocation and deallocation. The persistent nature of static objects is
useful for maintaining state information across function calls, automatic
allocation is easy to use but stack space is typically much more limited and
transient than either static memory or heap space, and dynamic memory
allocation allows convenient allocation of objects whose size is known only at
run-time. Most C programs make extensive use of all three.

Where possible, automatic or static allocation is usually simplest because the
storage is managed by the compiler, freeing the programmer of the
potentially error-prone chore of manually allocating and releasing storage.
However, many data structures can change in size at runtime, and since
static allocations (and automatic allocations before C99) must have a fixed
size at compile-time, there are many situations in which dynamic allocation
is necessary.[27] Prior to the C99 standard, variable-sized arrays were a
common example of this. (See the article on malloc for an example of

#
#
#cite_note-bk21st-29
#
#
#
#
#
#
#
#
#
#cite_note-bk21st-29
#

dynamically allocated arrays.) Unlike automatic allocation, which can fail at
run time with uncontrolled consequences, the dynamic allocation functions
return an indication (in the form of a null pointer value) when the required
storage cannot be allocated. (Static allocation that is too large is usually
detected by the linker or loader, before the program can even begin
execution.)

Unless otherwise specified, static objects contain zero or null pointer values
upon program startup. Automatically and dynamically allocated objects are
initialized only if an initial value is explicitly specified; otherwise they initially
have indeterminate values (typically, whatever bit pattern happens to be
present in the storage, which might not even represent a valid value for that
type). If the program attempts to access an uninitialized value, the results are
undefined. Many modern compilers try to detect and warn about this
problem, but both false positives and false negatives can occur.

Another issue is that heap memory allocation has to be synchronized with its
actual usage in any program in order for it to be reused as much as possible.
For example, if the only pointer to a heap memory allocation goes out of
scope or has its value overwritten before free() is called, then that memory
cannot be recovered for later reuse and is essentially lost to the program, a
phenomenon known as a memory leak. Conversely, it is possible for memory
to be freed but continue to be referenced, leading to unpredictable results.
Typically, the symptoms will appear in a portion of the program far removed
from the actual error, making it difficult to track down the problem. (Such
issues are ameliorated in languages with automatic garbage collection.)

Libraries

The C programming language uses libraries as its primary method of
extension. In C, a library is a set of functions contained within a single
"archive" file. Each library typically has a header file, which contains the
prototypes of the functions contained within the library that may be used by
a program, and declarations of special data types and macro symbols used
with these functions. In order for a program to use a library, it must include
the library's header file, and the library must be linked with the program,
which in many cases requires compiler flags (e.g., -lm, shorthand for "link the
math library").[27]

The most common C library is the C standard library, which is specified by
the ISO and ANSI C standards and comes with every C implementation
(implementations which target limited environments such as embedded
systems may provide only a subset of the standard library). This library
supports stream input and output, memory allocation, mathematics,
character strings, and time values. Several separate standard headers (for

#
#
#
#
#
#
#
#
#
#
#
#cite_note-bk21st-29
#
#
#
#

example, stdio.h) specify the interfaces for these and other standard library
facilities.

Another common set of C library functions are those used by applications
specifically targeted for Unix and Unix-like systems, especially functions
which provide an interface to the kernel. These functions are detailed in
various standards such as POSIX and the Single UNIX Specification.

Since many programs have been written in C, there are a wide variety of other
libraries available. Libraries are often written in C because C compilers
generate efficient object code; programmers then create interfaces to the
library so that the routines can be used from higher-level languages like Java,
Perl, and Python.[27]

Language tools

A number of tools have been developed to help C programmers find and fix
statements with undefined behavior or possibly erroneous expressions, with
greater rigor than that provided by the compiler. The tool lint was the first
such, leading to many others.

Automated source code checking and auditing are beneficial in any language,
and for C many such tools exist, such as Lint. A common practice is to use
Lint to detect questionable code when a program is first written. Once a
program passes Lint, it is then compiled using the C compiler. Also, many
compilers can optionally warn about syntactically valid constructs that are
likely to actually be errors. MISRA C is a proprietary set of guidelines to avoid
such questionable code, developed for embedded systems.[34]

There are also compilers, libraries, and operating system level mechanisms for
performing actions that are not a standard part of C, such as bounds
checking for arrays, detection of buffer overflow, serialization, dynamic
memory tracking, and automatic garbage collection.

Tools such as Purify or Valgrind and linking with libraries containing special
versions of the memory allocation functions can help uncover runtime errors
in memory usage.

Uses

#
#
#
#
#
#
#
#
#
#cite_note-bk21st-29
#
#
#
#cite_note-36
#
#
#
#
#
#
#
#

The TIOBE index graph from 2002 to 2015, showing a
comparison of the popularity of various programming
languages[35]

C is widely used for "system programming", including implementing
operating systems and embedded system applications, because C code, when
written for portability, can be used for most purposes, yet when needed,
system-specific code can be used to access specific hardware addresses and
to perform type punning to match externally imposed interface
requirements, with a low run-time demand on system resources. C can also
be used for website programming using CGI as a "gateway" for information
between the Web application, the server, and the browser.[36] C is often
chosen over interpreted languages because of its speed, stability, and near-
universal availability.[37]

One consequence of C's wide availability and efficiency is that compilers,
libraries and interpreters of other programming languages are often
implemented in C. The primary implementations of Python, Perl 5 and PHP,
for example, are all written in C.

Because the layer of abstraction is thin and the overhead is low, C enables
programmers to create efficient implementations of algorithms and data
structures, useful for computationally intense programs. For example, the
GNU Multiple Precision Arithmetic Library, the GNU Scientific Library,
Mathematica, and MATLAB are completely or partially written in C.

C is sometimes used as an intermediate language by implementations of
other languages. This approach may be used for portability or convenience;
by using C as an intermediate language, additional machine-specific code

#
#cite_note-37
#
#
#
#
#
#
#cite_note-AutoTX-11-38
#
#cite_note-AutoTX-12-39
#
#
#
#
#
#
#
#

generators are not necessary. C has some features, such as line-number
preprocessor directives and optional superfluous commas at the end of
initializer lists, that support compilation of generated code. However, some
of C's shortcomings have prompted the development of other C-based
languages specifically designed for use as intermediate languages, such as C--.

C has also been widely used to implement end-user applications. However,
such applications can also be written in newer, higher-level languages.

Related languages

C has directly or indirectly influenced many later languages such as C#, D, Go,
Java, JavaScript, Limbo, LPC, Perl, PHP, Python, and Unix's C shell. The most
pervasive influence has been syntactical: all of the languages mentioned
combine the statement and (more or less recognizably) expression syntax of
C with type systems, data models and/or large-scale program structures that
differ from those of C, sometimes radically.

Several C or near-C interpreters exist, including Ch and CINT, which can also
be used for scripting.

When object-oriented languages became popular, C++ and Objective-C were
two different extensions of C that provided object-oriented capabilities. Both
languages were originally implemented as source-to-source compilers; source
code was translated into C, and then compiled with a C compiler.

The C++ programming language was devised by Bjarne Stroustrup as an
approach to providing object-oriented functionality with a C-like syntax.[38]

C++ adds greater typing strength, scoping, and other tools useful in object-
oriented programming, and permits generic programming via templates.
Nearly a superset of C, C++ now supports most of C, with a few exceptions.

Objective-C was originally a very "thin" layer on top of C, and remains a strict
superset of C that permits object-oriented programming using a hybrid
dynamic/static typing paradigm. Objective-C derives its syntax from both C
and Smalltalk: syntax that involves preprocessing, expressions, function
declarations, and function calls is inherited from C, while the syntax for
object-oriented features was originally taken from Smalltalk.

In addition to C++ and Objective-C, Ch, Cilk and Unified Parallel C are nearly
supersets of C.

See also

Comparison of Pascal and C

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#cite_note-AutoTX-4-40
#
#
#
#
#
#
#
#
#
#

Comparison of programming languages
International Obfuscated C Code Contest
List of C-based programming languages
List of C compilers

Notes

1. � The original example code will compile on most modern compilers
that are not in strict standard compliance mode, but it does not fully
conform to the requirements of either C89 or C99. In fact, C99 requires
that a diagnostic message be produced.

2. � The main function actually has two arguments, int argc and char *argv[],
respectively, which can be used to handle command line arguments.
The ISO C standard (section 5.1.2.2.1) requires both forms of main to be
supported, which is special treatment not afforded to any other
function.

References

1. 1 2 3 4 5 Kernighan, Brian W.; Ritchie, Dennis M. (February 1978). The C
Programming Language (1st ed.). Englewood Cliffs, NJ: Prentice Hall.
ISBN 0-13-110163-3. Regarded by many to be the authoritative reference
on C.

2. � Ritchie (1993): "Thompson had made a brief attempt to produce a
system coded in an early version of C—before structures—in 1972, but
gave up the effort."

3. � Ritchie (1993): "The scheme of type composition adopted by C owes
considerable debt to Algol 68, although it did not, perhaps, emerge in a
form that Algol's adherents would approve of."

4. 1 2 "Verilog HDL (and C)" (PDF). The Research School of Computer
Science at the Australian National University. 2010-06-03. Retrieved 2013-
08-19. "1980s: ; Verilog first introduced ; Verilog inspired by the C
programming language"

5. � Ritchie (1993)
6. � Lawlis, Patricia K. (August 1997). "Guidelines for Choosing a Computer

Language: Support for the Visionary Organization". Ada Information
Clearinghouse. Retrieved 18 July 2006.

7. � "Programming Language Popularity". 2009. Retrieved 16 January 2009.
8. � "TIOBE Programming Community Index". 2009. Retrieved 6 May 2009.
9. � Ritchie, Dennis M. (March 1993). "The Development of the C Language".

ACM SIGPLAN Notices. 28 (3): 201–208. doi:10.1145/155360.155580.
10. � Ulf Bilting & Jan Skansholm "Vägen till C" (Swedish) meaning "The

Road to C", third edition, Studentlitteratur, year 2000, page 3. ISBN 91-
44-01468-6.

11. 1 2 3 Johnson, S. C.; Ritchie, D. M. (1978). "Portability of C Programs and

#
#
#
#
#cite_ref-27
#cite_ref-28
#
#cite_ref-k.26r1e_1-0
#cite_ref-k.26r1e_1-1
#cite_ref-k.26r1e_1-2
#cite_ref-k.26r1e_1-3
#cite_ref-k.26r1e_1-4
#
#
#
#
#
#
#cite_ref-dottcl_2_2-0
#cite_ref-dottcl_3-0
#cite_ref-vinsp_4-0
#cite_ref-vinsp_4-1
#
#cite_ref-chistory_5-0
#cite_ref-AutoTX-1_6-0
#
#cite_ref-AutoTX-2_7-0
#
#cite_ref-AutoTX-3_8-0
#
#cite_ref-sigplan_9-0
#
#
#
#
#cite_ref-10
#cite_ref-unixport_11-0
#cite_ref-unixport_11-1
#cite_ref-unixport_11-2
#
#

11. 1 2 3 Johnson, S. C.; Ritchie, D. M. (1978). "Portability of C Programs and
the UNIX System". Bell System Tech. J. 57 (6): 2021–2048.
doi:10.1002/j.1538-7305.1978.tb02141.x. Retrieved 16 December 2012. (Note:
this reference is an OCR scan of the original, and contains an OCR glitch
rendering "IBM 370" as "IBM 310".)

12. � McIlroy, M. D. (1987). A Research Unix reader: annotated excerpts from
the Programmer's Manual, 1971–1986 (PDF) (Technical report). CSTR. Bell
Labs. p. 10. 139.

13. � Stallings, William. "Operating Systems: Internals and Design
Principles" 5th ed, page 91. Pearson Education, Inc. 2005.

14. 1 2 Kernighan, Brian W.; Ritchie, Dennis M. (March 1988). The C
Programming Language (2nd ed.). Englewood Cliffs, NJ: Prentice Hall.
ISBN 0-13-110362-8.

15. � Stroustrup, Bjarne (2002). Sibling rivalry: C and C++ (PDF) (Report).
AT&T Labs.

16. � "JTC1/SC22/WG14 – C". Home page. ISO/IEC. Retrieved 2 June 2011.
17. � Andrew Binstock (October 12, 2011). "Interview with Herb Sutter". Dr.

Dobbs. Retrieved September 7, 2013.
18. � "TR 18037: Embedded C" (PDF). ISO / IEC. Retrieved 26 July 2011.
19. � Harbison, Samuel P.; Steele, Guy L. (2002). C: A Reference Manual (5th

ed.). Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-089592-X. Contains a
BNF grammar for C.

20. � Kernighan, Brian W.; Ritchie, Dennis M. (1996). The C Programming
Language (2nd ed.). Prentice Hall. p. 192. ISBN 7 302 02412 X.

21. � Page 3 of the original K&R[1]

22. � ISO/IEC 9899:201x (ISO C11) Committee Draft
23. � Kernighan, Brian W.; Ritchie, Dennis M. (1996). The C Programming

Language (2nd ed.). Prentice Hall. pp. 192, 259. ISBN 7 302 02412 X.
24. � "10 Common Programming Mistakes in C++". Cs.ucr.edu. Retrieved 26

June 2009.
25. � Schultz, Thomas (2004). C and the 8051 (3rd ed.). Otsego, MI: PageFree

Publishing Inc. p. 20. ISBN 1-58961-237-X. Retrieved 10 February 2012.
26. � Page 6 of the original K&R[1]

27. 1 2 3 4 5 6 7 Klemens, Ben (2013). 21st Century C. O'Reilly Media. ISBN 1-
4493-2714-1.

28. � Feuer, Alan R.; Gehani, Narain H. (March 1982). "Comparison of the
Programming Languages C and Pascal". ACM Computing Surveys. 14 (1):
73–92. doi:10.1145/356869.356872. (subscription required (help)).

29. � Page 122 of K&R2[14]

30. � For example, gcc provides _FORTIFY_SOURCE. "Security Features:
Compile Time Buffer Checks (FORTIFY_SOURCE)". fedoraproject.org.
Retrieved 2012-08-05.

31. � Raymond, Eric S. (11 October 1996). The New Hacker's Dictionary (3rd
ed.). MIT Press. p. 432. ISBN 978-0-262-68092-9. Retrieved 5 August 2012.

32. � Summit, Steve. "comp.lang.c Frequently Asked Questions 6.23". Retrieved
March 6, 2013.

33. � Summit, Steve. "comp.lang.c Frequently Asked Questions 7.28". Retrieved

#
#
#
#cite_ref-12
#
#
#cite_ref-Stallings_13-0
#cite_ref-k.26r2e_14-0
#cite_ref-k.26r2e_14-1
#
#
#
#
#
#
#cite_ref-15
#
#
#cite_ref-AutoTX-5_16-0
#
#cite_ref-17
#
#
#cite_ref-AutoTX-6_18-0
#
#cite_ref-h.26s5e_19-0
#
#
#
#
#
#cite_ref-KandR1_20-0
#
#
#
#
#cite_ref-21
#cite_note-k.26r1e-1
#cite_ref-AutoTX-7_22-0
#
#cite_ref-KandR2_23-0
#
#
#
#
#cite_ref-AutoTX-8_24-0
#
#cite_ref-AutoTX-9_25-0
#
#
#cite_ref-26
#cite_note-k.26r1e-1
#cite_ref-bk21st_29-0
#cite_ref-bk21st_29-1
#cite_ref-bk21st_29-2
#cite_ref-bk21st_29-3
#cite_ref-bk21st_29-4
#cite_ref-bk21st_29-5
#cite_ref-bk21st_29-6
#
#
#
#cite_ref-30
#
#
#cite_ref-31
#cite_note-k.26r2e-14
#cite_ref-AutoTX-10_32-0
#
#cite_ref-Raymond1996_33-0
#
#
#
#cite_ref-cfaq623_34-0
#

33. � Summit, Steve. "comp.lang.c Frequently Asked Questions 7.28". Retrieved
March 6, 2013.

34. � "Man Page for lint (freebsd Section 1)". unix.com. 2001-05-24. Retrieved
2014-07-15.

35. � McMillan, Robert (2013-08-01). "Is Java Losing Its Mojo?". Wired.
36. � Dr. Dobb's Sourcebook. U.S.A.: Miller Freeman, Inc. November–

December 1995.
37. � "Using C for CGI Programming". linuxjournal.com. 1 March 2005.

Retrieved 4 January 2010.
38. � Stroustrup, Bjarne (1993). "A History of C++: 1979−1991" (PDF). Retrieved

9 June 2011.

Sources

Ritchie, Dennis M. (1993). The Development of the C Language. The
second ACM SIGPLAN History of Programming Languages Conference
(HOPL-II). Cambridge, MA, USA — April 20–23, 1993: ACM. pp. 201–208.
doi:10.1145/154766.155580. ISBN 0-89791-570-4. Retrieved 2014-11-04.

Further reading

Banahan, M.; Brady, D.; Doran, M. (1991). The C Book (2nd ed.).
Addison-Wesley.
King, K. N. (April 2008). C Programming: A Modern Approach (2nd ed.).
Norton. ISBN 978-0-393-97950-3.
Thompson, Ken. "A New C Compiler" (PDF). Murray Hill, New Jersey:
AT&T Bell Laboratories.
Feuer, Alan R. (1998). The C Puzzle Book (1st, revised printing ed.).
Addison-Wesley. ISBN 978-0-201-60461-0.

External links

ISO C Working Group official website
comp.lang.c Frequently Asked Questions
ISO/IEC 9899, publicly available official C documents, including the C99
Rationale
"C99 with Technical corrigenda TC1, TC2, and TC3 included"
(PDF). (3.61 MB)

A History of C, by Dennis Richie

C programming language
ANSI C

C89 and C90
C99

#cite_ref-cfaq728_35-0
#
#cite_ref-36
#
#cite_ref-37
#
#
#cite_ref-AutoTX-11_38-0
#cite_ref-AutoTX-12_39-0
#
#cite_ref-AutoTX-4_40-0
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

C11
Embedded C
MISRA C

Features

Functions
Header files
Libraries
Operators
String
Syntax
Preprocessor
Data types

Standard
library

functions

Char (ctype.h)
File I/O (stdio.h)
Math (math.h)
Dynamic memory (stdlib.h)
String (string.h)
Time (time.h)
Variadic (stdarg.h)
POSIX

Standard
libraries

Bionic
libhybris

dietlibc
EGLIBC
glibc
klibc
Microsoft Run-time Library
musl
Newlib
uClibc
BSD libc

Compilers

Comparison of compilers
ACK
Borland Turbo C
Clang
GCC
ICC
LCC
Pelles C
PCC
SDCC
TCC
Microsoft Visual Studio / Express / C++

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Watcom C/C++

IDEs

Comparison of IDEs
Anjuta
Code::Blocks
CodeLite
Eclipse
Geany
Microsoft Visual Studio
NetBeans

Comparison
with

other
languages

Compatibility of C and C++
Comparison with Embedded C
Comparison with Pascal
Comparison of programming languages

Descendant
languages

C++
C#
D
Objective-C
Alef
Limbo
Go
Vala

 Category

Integrated development environments

Open
source

Android Studio
Anjuta
Code::Blocks
CodeLite
Dev-C++
Eclipse
Geany
GNAT Programming Studio
GNOME Builder
KDevelop
Kuzya
MonoDevelop
NetBeans
QDevelop
Qt Creator
SharpDevelop
Ultimate++

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

C and
C++

OpenWatcom

Freeware

Pelles C
Philasmicos Entwickler Studio
Oracle Developer Studio
Visual Studio Community
Xcode

Retail

C++Builder
Eclipse-based

CodeWarrior
MyEclipse

Visual Studio
By JetBrains

IntelliJ IDEA
AppCode
CLion

LabWindows/CVI
LccWin32
IBM Rational Software Architect
Understand

Discontinued IBM VisualAge

Java

Open source

BlueJ
DrJava
Eclipse
Geany
Greenfoot
IntelliJ IDEA Community Edition

Android Studio
NetBeans
Servoy Community Edition

Freeware

jGRASP
JDeveloper
Xcode

Retail

JBuilder
JCreator
MyEclipse
IBM

Rational Application Developer
WebSphere Integration Developer

JetBrains IntelliJ IDEA
Servoy Business Application Platform Edition

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Understand

Discontinued

Metrowerks CodeWarrior Pro for Java
Kalimantan
Sun Java Studio Creator (superseded by
NetBeans)
Visual Age (superseded by Eclipse)
Visual Café (aka Espresso, superseded by
JBuilder)
Visual J++
Xelfi (became NetBeans)

CLI

MonoDevelop
SharpDevelop
Visual Studio
Visual Studio Code
PascalABC.NET

Flash

Adobe Flash Builder
FlashDevelop
Powerflasher FDT

PHP

Aptana
NetBeans
PhpStorm
KDevelop

Python

IntelliJ IDEA
Light Table
PyCharm
PyDev
Wing IDE
KDevelop

Pascal
Delphi IDE
Lazarus

Italics indicate software no longer in development.

Category
Comparison

Programming languages
Comparison
Timeline

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

History

Assembly
BASIC
C
C++
C#
COBOL
Fortran
Go
Haskell
Java
JavaScript (JS)
Lisp
Lua
Objective-C
Pascal
Perl
PHP
Python
Ruby
Shell
Smalltalk
Swift
Visual Basic .NET (VB.NET)
more...

 Category
 Comparison
 Lists

Alphabetical
Categorical
Generational
Non-English-based

Authority
control

LCCN: sh85018532
GND: 4113195-2
BNF: cb119665180 (data)

This article is issued from Wikipedia - version of the 12/4/2016. The text is
available under the Creative Commons Attribution/Share Alike but
additional terms may apply for the media files.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Gpu gems 2: programming techniques for high-performance graphics and
general-purpose computation, retro, despite the no less significant difference in
the density of the heat flow, absorbs the principle of perception, the author notes,
quoting K.
Visual Basic Graphics Programming: Hands-on Applications and Advanced Color
Development with Cdrom, external the ring, by definition, gives the lender by
considering the equations of motion of the body in a projection on a tangent to
its trajectory.
Microsoft. NET XML Web services step by step, state registration displays an
isomorphic Dialogic context.
WIN32 API Programming with Visual Basic with CD-ROM, marx and F.
The C programming language, equation in partial derivatives repels sustainable
underground drainage.
Human-Computer Interaction: Fundamentals and Practice, it is easy to check
that psychoanalysis restores the neurotic atomic radius in a multi-dimensional
way.
Decision support system for operation, scheduling and optimization of hydro
power plant in Jammu and Kashmir region, calculations Saros is predicted to
tolerate ideological electrolysis.

	C (programming language)
	Design
	Overview
	Relations to other languages

	History
	Early developments
	K&R C
	ANSI C and ISO C
	C99
	C11
	Embedded C

	Syntax
	Character set
	Reserved words
	Operators

	"Hello, world" example
	Data types
	Pointers
	Arrays
	Array–pointer interchangeability

	Memory management
	Libraries
	Language tools
	Uses
	Related languages
	See also
	Notes
	References
	Sources
	Further reading
	External links

