THE ASTROPHYSICALJOURNAL

SUPPLEMENT SERIES

THE ACS NEARBY GALAXY SURVEYTREASURY

Julianne J. Dalcanton ${ }^{1}$, Benjamin F. Williams ${ }^{1}$, Anil C. Seth ${ }^{2,18}$, Andrew Dolphin ${ }^{3}$, Jon Holtzman ${ }^{4}$, Keith Rosema ${ }^{1}$, Evan D. Skillman ${ }^{5}$, Andrew Cole ${ }^{6}$, Léo Girardi ${ }^{7}$, Stephanie M. Gogarten ${ }^{1}$, Igor D. Karachentsev ${ }^{8}$, Knut Olsen ${ }^{9}$, Daniel Weisz ${ }^{5}$, Charlotte Christensen ${ }^{1}$, Ken Freeman ${ }^{11}$, Karoline Gilbert ${ }^{1}$, Carme Gallart ${ }^{12}$, Jason Harris ${ }^{13}$, Paul Hodge ${ }^{1}$, Roelof S. de Jong ${ }^{10}$, Valentina Karachentseva ${ }^{14}$, Mario Mateo ${ }^{15}$, Peter B. Stetson ${ }^{16}$, Maritza Tavarez ${ }^{17}$, Dennis Zaritsky ${ }^{13}$, Fabio Governato ${ }^{1}$, and Thomas Quinn ${ }^{1}$ Publis hed 2009 June 19 • © 2009. The American Astronomical Society. All rights reserved.
The Astrophysical Journal Supplement Series, Volume 183, Number 1

A. Article PDF

4909 Total downloads
Cited by 266 articles

Get permission to re-use this article

Share this article

+ Article information

Authore-mails

jd@astro.washington.edu
ben@astro.washington.edu
krosema@astro.washington.edu
stephanie@astro.washington.edu
christensen@astro.washington.edu
fabio@astro.washington.edu
trq@astro.washington.edu
aseth@cfa.harvard.edu
adolphin@raytheon.com
holtz@nmsu.edu
dweisz@astro.umn.edu
skillman@astro.umn.edu
andrew.cole@utas.edu.au
leo.girardi@oapd.inaf.it
ikar@luna.sao.ru
kolsen@noao.edu
dejong@stsci.edu
kcf@mso.anu.edu.au
carme@iac.es
jharris@as.arizona.edu
dennis@fishingholes.as.arizona.edu
vkarach@observ.univ.kiev.ua
mmateo@umich.edu
Peter.Stetson@nrc-cnrc.gc.ca
martavbrown@yahoo.com

Author affiliations

${ }^{1}$ Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195, USA

2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
${ }^{3}$ Raytheon, 1151 E. Hermans Road, Tucson, AZ 85756, USA
${ }^{4}$ Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger St., Las Cruces, NM 88003, USA
${ }^{5}$ Department of Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455, USA
${ }^{6}$ School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania, Australia
${ }^{7}$ Osservatorio Astronomico di Padova - INAF, Vicolo dell'Osservatorio 5, l-35122 Padova, Italy
${ }^{8}$ Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnji Arkhyz, Karachai-Circessia Republic 369167, Russia

9 NOAO, National Optical Astronomy Observatory 950 N. Cherry Ave., Tucson, AZ 85719, USA

10 Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA
${ }^{11}$ Mount Stromlo Observatory, Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 0200, Australia

12 Instituto de Astrofísica de Canarias, Vía Láctea, s/n, 38200 La Laguna, Tenerife, Spain
${ }^{13}$ Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
${ }^{14}$ Astronomical Observatory of Kiev University, Observatorna 3, 254053, Kiev, Ukraine
${ }^{15}$ Department of Astronomy, University of Michigan, 830 Denninson Building, Ann Arbor, MI 48109-1090, USA

16 Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada
${ }^{17}$ Forest Ridge School of the Sacred Heart, 4800 139th Ave SE, Bellevue, WA 98006, USA

Dates

Received 2008 August 12
Accepted 2009 May 4
Published 2009 June 19

Citation

Julianne J. Dalcanton eta/2009 ApJS 18367
©() Create citation alert

D 01

https://doi.org/10.1088/0067-0049/183/1/67

Keywords

catalogs; galaxies: formation; galaxies: stellar content; surveys
X Journal RSS feed
©() Sign up for new issue notifications

Abstract

The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies ($D<4$ Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small and large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of $\sim 10^{4}$ in luminosity and star formation rate. The survey data consist of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera 2 (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the
full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of $m_{\text {F475W }}=28.0 \mathrm{mag}, m_{\mathrm{F} 606 \mathrm{~W}}=27.3 \mathrm{mag}$, and $m_{\mathrm{F} 814 \mathrm{~W}}=27.3 \mathrm{mag}$, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.

Export citation and abstract

>	BibTeX \quad RIS

+ Related links

- NASA ADS Record [
- NED Objects ET
- Simbad Objects \mathbb{K}
- About Related Links

1. INTRODUCTION

The study of nearby galaxies has been revolutionized by the Hubble Space Telescope (HST). The high spatial resolutions of the Wide Field Planetary Camera 2 (WFPC2) and the Advanced Camera for Surveys (ACS) reveal individual stars and parsec-scale structures, permitting studies of stellar populations, star formation histories (SFHs), and
stellar clusters for galaxies out to several megaparsecs. However, despite the large number of HST projects on these topics, past observations have been piecemeal and lack a unifying, coherent observational strategy in spite of the considerable overlap in the core scientific goals of many of the projects. Within a single galaxy, or from galaxy to galaxy, the locations of the HST exposures have been chaotic (having been chosen independently and for different purposes), and the filters and depths of the exposures have been highly variable. While past observations have provided dramatic insights into the SFHs of individual systems, the resulting archive complicates any uniform comparative study of galaxies in the local universe and dramatically reduces the scientific legacy of this data set.

The ACS Nearby Galaxy Survey Treasury (ANGST) program aims to rectify this situation by creating a uniform, multi-color archive of observations of resolved stellar populations within a volume-limited sample of nearby galaxies. The survey provides complete and unbiased sampling of the local universe, thereby maximizing the legacy impact of the resulting data set, and enabling meaningful comparisons among galaxies in the sample and with cosmological simulations. Within this volume, ANGST adds more than a hundred orbits of new high-quality observations, and provides uniform reduction and photometry of both the new and archival observations. The resulting survey now offers superb targets for future multi-wavelength surveys, including the VLA-ANGST survey (Ott et al. 2008) and the Spitzer Local Volume Legacy Survey (LVL; Kennicutt et al. 2007), by allowing one to tie the multi-wavelength observations to the local SFH revealed by ANGST.

In this paper we describe the survey design of ANGST, including the sample selection (Section 2), the observing strategy for new observations (tiling patterns, filter choices, exposure times, etc.) using
both ACS (Section 3) and WFPC2 (Section 4), and the archival data employed by the survey (Section 5). We then present photometry for the survey galaxies for both ACS (Section 6) and WFPC2 (Section $\mathbf{7}$), tests of the photometric reliability (Section $\underline{8}$), astrometry (Section $\underline{9}$), and the resulting data products included in this data release (Section 10). In Section 11 we plot color-magnitude diagrams (CMDs) for all of the ANGST galaxies, and in Section $\underline{12}$ we measure colors and magnitudes for the tip of the red giant branch (TRGB), from which accurate relative distances are derived.

2. THE SAMPLE

2.1. Sample Selection

We drew the initial ANGST sample from the Karachentsev et al. (2004) Catalog of Neighboring Galaxies (CNG), updated with revised distances provided by Karachentsev. We restricted the catalog to galaxies beyond the zero velocity surface of the Local Group (van den Bergh 2000) due to the efficacy of ground-based observations within $2 \boxtimes \mathrm{Mpc}$ and the large number of existing HSTobservations (e.g., Holtzman et al. 2006). We further restricted the sample to $|b|>20^{\circ}$ to avoid sample incompleteness at low Galactic latitudes.

The choice of a maximum distance for the sample required balancing our scientific goals against constructing an observationally efficient program. At large distances, a wider variety of galaxy environments can be sampled, at the expense of larger photometric errors due to increased crowding and longer exposure times. We adopted an initial outer radius cut of $3.5 \boxtimes \mathrm{Mpc}$, with in which deep CMDs could be derived with only modest exposure times. However, the Local Volume contains mostly field galaxies until reaching the massive M81 group at $\sim 3.6 \boxtimes$ Mpc and the Cen A group at $\sim 3.7 \boxtimes \mathrm{Mpc}$. Scientifically, the case for including at least one of these groups is strong. Without them, the
limited range of environments sampled by a $D \lesssim 3.5 \boxtimes \mathrm{Mpc}$ sphere would preclude studies of correlations between SFH, galaxy morphology, and local environment. Of the two groups, the M81 group was judged to be the preferred target due to its high galactic latitude, low foreground extinction, and highly complete membership information. Galaxies in the M81 group were drawn from
Karachentsev et al. (2002a), but do not include the newest candidate members reported in Chiboucas et al. (2009). We also included a second high-density environment centered on the NGC 253 clump (D《 $3.9 \boxtimes \mathrm{Mpc}$) in the Sculptor filament (Karachentsev et al. 2003), further increasing the range of environments probed. The extensions into the M81 group and NGC 253 clump of the Sculptor group also improves coverage of luminous galaxies that are poorly represented in the $D<$ $3.5 \boxtimes \mathrm{Mpc}$ volume.

The resulting sample of 69 galaxies is given in Table 1 , along with the distances adopted during sample selection. Notable changes from the published version of the CNG include larger distances for UGC 8638, E059-01, and KKH60, which took them out of the sample, revised closer distances for NGC 4163 and DDO 183 which brought them into the sample, and elimination of HIJASS, which has no detectable stars. Distances for NGC 247, NGC 55, DDO 187, UGC 8833, HS117, and KKH37 were also revised according to new distances in Karachentsev (2005). Other data compiled in Table 1 include absolute total magnitudes in B, morphological T-types, angular diameters (D_{25} for large galaxies, $D_{26.5}$ for some dwarfs), and Hiline widths (W_{50}); all these quantities are listed as originally compiled in the CNG, and details can be found in Karachentsev et al. (2004). We also include apparent total K-band magnitudes from the literature when available; these are included for completeness only, and no attempt has been made to bring these to a common aperture with the B-band magnitudes from the CNG. Table 1 also indicates the original planned
observational strategy for the sample galaxies; as we discuss below, not all observations were carried out as planned due to the failure of ACS.

Table 1. ANGST Sample Galaxies and Planned Observations

Galaxy	Alt. Names	Dist. (Mpc)	$\begin{aligned} & \text { R.A. } \\ & \text { (J2000) } \end{aligned}$	$\begin{gathered} \text { Decl. } \\ \text { (J2000) } \end{gathered}$	Diam. (')	1
Antlia		1.3	10:04:04.0	-27:19:55	2.0	-9.
SexA	DDO75	1.3	10:11:00.8	-04:41:34	5.5	-13
N3109	DDO236	1.3	10:03:07.2	-26:09:36	17.0	-15
SexB	U5373	1.4	10:00:00.1	05:19:56	5.1	-13
KKR25		1.9	16:13:47.6	54:22:16	1.1	-9.
KK230	KKR3	1.9	14:07:10.7	35:03:37	0.6	-8.
E410-005		1.9	00:15:31.4	-32:10:48	1.3	-1
E294-010		1.9	00:26:33.3	-41:51:20	1.1	-1c
N55		2.1	00:15:08.5	-39:13:13	32.4	-17
I5152		2.1	22:02:41.9	-51:17:43	5.2	-15
GR8	U8091	2.1	12:58:40.4	14:13:03	1.1	-12
N300		2.1	00:54:53.5	-37:40:57	21.9	-17
UA438	E407-18	2.2	23:26:27.5	-32:23:26	1.5	-12
DDO187	U9128	2.3	14:15:56.5	23:03:19	1.7	-12
KKH98		2.5	23:45:34.0	38:43:04	1.1	-1c
DDO125	U7577	2.5	12:27:41.8	43:29:38	4.3	-14
tiozno	17w<n	16	12.20.114	51.51 .26	17	11

Galaxy	Alt. Names	Dist.	TJ.J..Ti.t R.A.	Decl.	Diam.	1
KKH86		(2apc)	$13(52+0 \cdot 30)^{6}$	$04524035)$	0.7')	-11
DDO99	U6817	2.6	11:50:53.0	38:52:50	4.1	-13
DDO190	U9240	2.8	14:24:43.5	44:31:33	1.8	12
DDO113	UA276	2.9	12:14:57.9	36:13:08	1.5	-1
N4214	U7278	2.9	12:15:38.9	36:19:39	8.5	-17
DDO181	U8651	3.0	13:39:53.8	40:44:21	2.3	-12
N3741	U6572	3.0	11:36:06.4	45:17:07	2.0	-13
N4163	U7199	3.0	12:12:08.9	36:10:10	1.9	-13
N404	U718	3.1	01:09:26.9	35:43:03	2.5	-16
UA292	CVnI-dwA	3.1	12:38:40.0	32:46:00	1.0	-1.
U8833		3.1	13:54:48.7	35:50:15	0.9	-12
DDO183	U8760	3.2	13:50:51.1	38:01:16	2.2	-13
N2366	U3851	3.2	07:28:52.0	69:12:19	7.3	-15
DDO44	UA133	3.2	07:34:11.3	66:53:10	3.0	-1.
E321-014		3.2	12:13:49.6	$-38: 13: 53$	1.4	-12
U4483		3.2	08:37:03.0	69:46:31	1.2	-12
N2403	U3918	3.3	07:36:54.4	65:35:58	21.9	-18
DDO6	UA15	3.3	00:49:49.3	-21:00:58	1.7	-12
KKH37		3.4	06:47:45.8	80:07:26	1.2	-1
HoII	U4305	3.4	08:19:05.9	70:42:51	7.9	-1t
KDG2	E540-030,KK9	3.4	00:49:21.1	-18:04:28	1.2	-1

$\begin{aligned} & \text { MGdefxy } \\ & 20-131 \end{aligned}$	Alt. Names	3Plist. (Mpc)	$\begin{gathered} \text { 12: } \mathrm{k} .: \mathrm{A} 6.7 \\ (\mathrm{~J} 2000) \end{gathered}$		D虽。 (')	$-1 \hat{4}$
E540-032		3.4	00:50:24.6	-19:54:25	1.3	-1.
FM1	FODI	3.4	09:45:25.6	68:45:27	0.9	
KK77	F12D1	3.5	09:50:10.0	67:30:24	2.4	-1.
KDG63	U5428,DDO71	3.5	10:05:07.3	66:33:18	1.7	-1.
N4190	U7232	3.5	12:13:44.6	36:38:00	1.7	-14
M82	N3034, U5322	3.5	09:55:53.9	69:40:57	11.2	-18
KDG52	M81-Dwarf-A	3.5	08:23:56.0	71:01:46	1.3	-1.
DDO53	U4459	3.5	08:34:06.5	66:10:45	1.6	-12
N2976	U5221	3.6	09:47:15.6	67:54:49	5.9	-16
KDG61		3.6	09:57:02.7	68:35:30	2.4	-12
M81	N3031, U5318	3.6	09:55:33.5	69:04:00	26.9	$-2($
N247	UA11	3.6	00:47:08.3	$-20: 45: 36$	15.4	-17
HoIX	U5336,DDO66,KDG62	3.7	09:57:32.4	69:02:35	2.5	-13
KDG64	U5442	3.7	10:07:01.9	67:49:39	1.9	-12
IKN		3.7	10:08:05.9	68:23:57	2.7	$-1($
KDG73		3.7	10:52:55.3	69:32:45	0.6	-11
DDO78		3.7	10:26:27.9	67:39:24	2.0	-12
F8D1		3.8	09:44:47.1	67:26:19	5.5	-12
BK5N		3.8	10:04:40.3	68:15:20	0.8	$-1($

Galaxy	Alt. Names	Dist.	R.A.	Decl.	Diam.	1
HoI	U5139,DDO63	(129pc)		7 (J2doda)	$\left.3 . \psi^{\prime}\right)$	-1
BK6N		3.8	10:34:31.9	66:00:42	1.1	-1.
A0952+69		3.9	09.57.29.0	69.16.20	1.8	1
KKH57		3.9	10:00:16.0	63:11:06	0.6	-1
N253	UA13	3.9	00:47:34.3	-25:17:32	26.7	-20
HS117		4.0	10:21:25.2	71:06:58	1.5	-1.
DDO82	U5692	4.0	10:30:35.0	70:37:10	3.4	-1
BK3N		4.0	09:53:48.5	68:58:09	0.5	-9.
I2574	U5666, DDO81	4.0	10:28:22.4	68:24:58	13.2	-1)
Sc22	Sc-dE1	4.2	00:23:51.7	$-24: 42: 18$	0.9	-1

Notes. Distances, M_{B}, W_{50}, and T-type taken from CNG; values for m_{K} are total Kmagnitudes from either the 2MASS Large Galaxy Atlas (Jarrett et al. 2003) or from Vaduvescu et al. (2005) for dwarfs; Group membership from Karachentsev (2005) or Tully et al. (2006); \# of ANGST Pointings includes any planned deep fields; Deep column indicates planned observations that would reach high completeness in the red clump; note that not all planned observations were executed, due to ACS failure-actual observations are given in Table 2; 3 filter column indicates observations made in F475W+F606W+F814W, rather than default F475W+F606W for dwarfs; Archival lists Proposal ID of archival data to be used, with entries in parentheses indicating that archival data will be supplemented with new observations; H i detection for KKR25 in the CNG was not confirmed in later GMRT observations (Begum \& Chengalur 2005); (a) WFPC2 Archival data.

Download table as:

Table 2. ANGST Observations

Field Name	R.A. $(\mathrm{J} 2000)$	Decl. $(\mathrm{J} 2000)$	V3 PA (deg)	Aperture	Date Range	Instr.	Filter
NGC	1002	-2608	95.001	WFALL-FIX	$2007-$	WFPC2	F606W
$3109-$	41.8	58			$11-02$		
WIDE1							

F814W

NGC	1002	-2609	95.001	WFALL-FIX	$2007-$	WFPC2	F606W
$3109-$	49.9	07			$11-08$		

WIDE2

F814W

NGC 1002 -26 09 95.001 WFALL-FIX 2007- WFPC2 F606W
$\begin{array}{llll}3109-57.81 & 16.4 & 11-06\end{array}$
WIDE3

F814W

NGC 1003 -2609 95.001 WFALL-FIX 2007- WFPC2 F606W
$\begin{array}{llll}3109- & 05.81 & 25.6 & 11-10\end{array}$
WIDE4

F814W

NGC	1002	-2609	123.658	WFALL-FIX	$2007-$	WFPC2	F606W
3109-	34.1	23			$12-20$		
DEEP							

F814W

SEXB- $1000+0519$ 112.614 WFALL-FIX 2007- WFPC2 F606W $\begin{array}{lll}\text { DEEP } 03.9 & 29 & 12-12\end{array}$

00ङ5ield 18R.4A. 4Decl. V3 PA Aperture 0Dat8 Instr. Filter WNaninle (J2000) (J2000) (deg) Range

NGC	0014	-3909	101.141	WFALL	2008-	WFPC2	F606W
0055-	20.0	56			$07-04$		
WIDE2							

F814W

NGC	0014	-3910	101.142	WFALL	2007-	WFPC2	F606W
0055-	28.9	18			$08-07$		
WIDE3							

F814W

NGC	0014	-3910	104.002	WFALL	2007-	WFPC2	F606W
0055-	37.2	42			$08-09$		
WIDE4							

F814W
NGC 0015 -39 12 101.142 WFALL 2007- WFPC2 F606W 0055- 10.458 08-06

WIDE5

F814W

NGC 0013 -39 07 58.335 WFALL-FIX 2007- WFPC2 F606W
0055-
$44.4 \quad 43$
06-02
DEEP

Field R.A. Decl. V3 PA Aperture $\begin{array}{r}\text { Date } \\ \text { 2007- }\end{array} \quad$ Instr. $\quad \begin{array}{r}\text { Filter } \\ \text { F814W }\end{array}$ Name (J2000) (J2000) (deg)

GR8 $1258 \quad+1413$ 112.560 WFC1-FIX 2007- ACS F475W $40.94 \quad 00.6$ 01-03

F814W

NGC	0054	-3737	209.925	WFCENTER	2006-	ACS	F475W
0300-	21.5	58			$11-10$		
WIDE1							

NGC 0054 -37 39 209.925 WFCENTER 2006- ACS F475W 0300- 34.827 11-08 WIDE2

F606W

F814W

NGC 0054 -37 40 209.925 WFCENTER 2006- ACS F475W 0300- 47.853 11-09

WIDE3

F606W

F814W

KKH98 $2345+3843$ 230.070 WFC1-FIX 2007- ACS F475W $34.1910 .1001-02$

F814W

UGC8508 1330 +5454 122.276 WFC1-FIX 2006- ACS F475W $\begin{array}{lll}44.95 & 37.1 & 12-21\end{array}$

DDOIV	1424	+4431	I58.711	WFCI-FIX	2006-	ACS	F4J5V
Field	R.A.	Decl.	V3PA	Aperture	Date	Instr.	Filter
	43.72	35.2	$11-21$				
Name	$(\mathrm{J} 2000)$	$(\mathrm{J} 2000)$	(deg)		Range		

DDO113	1214	+3613	137.247	WFC1-FIX	2006- ACS F475W		
	58.28	03.1			$11-03$		

F814W
NGC $1215+3621$ 119.879 WFALL-FIX 2007- WFPC2 F606W 4214- $22.9 \quad 50 \quad 12-04$

DEEP

2007-
F814W
12-23

NGC	1136	+4517	134.012	WFC1-FIX	2006-	ACS	F475W
3741	06.46	03.4			$11-01$		

F814W
NGC $1212+3610$ 116.647 WFC1-FIX 2006- ACS F475W
$\begin{array}{llll}4163 & 09.57 & 07.0 & 12-08\end{array}$

F814W

F606W

NGC $0109+3544$ 49.998 WFALL-FIX 2007- WFPC2 F606W
$\begin{array}{llll}0404- & 16.9 & 08-08\end{array}$
DEEP

2007-
F814W
09-19

UGCA292 1238 +32 45 121.996 WFC1-FIX 2007- ACS F475W 40.4358 .5 01-01

Field R.A. Decl. V3 PA Aperture Date Instr. Filter
 (J2000) (J2000) (deg) 09-21
NGC $0738+6530$ 69.995 WFALL-FIX 2007- WFPC2 F606W $\begin{array}{llll}2403- & 05.5 & 16.0 & 11-26\end{array}$

DEEP

DDO6 0049 -21 01 121.489 WFC1-FIX 2006- ACS F475W 49.6900 .5

KKH37 $0647+8007$ 58.707 WFC1-FIX 2006- ACS F475W

2007-
12-01 09-19

F814W

F814W

NGC 0947 +6753 52.756 WFCENTER 2006- ACS F475W
297617.058 12-30 WIDE1

47.64	29.7	$11-10$

NGC 0947 +6751 51.353 WFCENTER 2006- ACS F475W 2976- $36.6 \quad 25$ 12-27

DEEP

2007-
F606W
01-10

M81- 0954 +69 16 89.814 WFCENTER 2006- ACS F475W
DEEP
34.750

Field R.A. Decl. V3 PA Aperture 2Dande Instr. F6illew Name (J2000) (J2000) (deg) Rkage
NGC 0047 -20 52 167.978 WFCENTER 2006- ACS F475W
0247-19.06 12.2 09-22

WIDE1
F606W

F814W

NGC	0047	-2049	167.979	WFCENTER	2006-	ACS	F475W
0247-	12.5	14			$09-20$		
WIDE2							

NGC 0047 -20 46 167.979 WFCENTER 2006- ACS F475W 0247- 10.4 09-21 WIDE3

F606W

F814W
KDG73 1052 +69 32 71.609 WFC1-FIX 2007- ACS F475W 58.54 52.1 01-01

F814W

DDO78	1026	+6739	130.158	WFC1-FIX	$2006-$	ACS	F475W
	29.17	12.1			$10-18$		

Field Name	$\begin{aligned} & \text { R.A. } \\ & \text { (J2000) } \end{aligned}$	$\begin{gathered} \text { Decl. } \\ \text { (J2000) } \end{gathered}$	V3 PA (deg)	Aperture	Date Range	Instr.	Fbitcw F814W
A0952+69	$\begin{aligned} & 0957 \\ & 36.08 \end{aligned}$	$\begin{aligned} & +6916 \\ & 59.5 \end{aligned}$	148.862	WFC1-FIX	$\begin{aligned} & 2006- \\ & 09-22 \end{aligned}$	ACS	F475W
							F814W
$\begin{aligned} & \text { NGC } \\ & 0253- \end{aligned}$	$\begin{aligned} & 0048 \\ & 19.59 \end{aligned}$	$\begin{aligned} & -2508 \\ & 51.2 \end{aligned}$	144.990	WFCENTER	2006- 09-19	ACS	F475W
WIDE1							
							F606W
							F814W
NGC	0048	-25 10	139.995	WFCENTER	2006-	ACS	F475W
0253-	08.7	48			09-08		
WIDE2							

NGC 0047 -25 12 159.219 WFCENTER 2006- ACS F475W $\begin{array}{llll}\text { 0253- } 57.9 & 48 & 09-15\end{array}$

WIDE3

F606W

F814W

NGC 0047 -25 14 140.893 WFCENTER 2006- ACS F475W
$\begin{array}{llll}\text { 0253- } 47.246 & 09-09\end{array}$
WIDE4

F606W

F814W

NGC 0047 -25 16 139.995 WFCENTER 2006- ACS F475W 0253-

Winiged	R.A.	Decl.	V3 PA	Aperture	Date	Instr.	Filter
Name	$(\mathrm{J} 2000)$	$(\mathrm{J} 2000)$	(deg)		Range		F606W

F814W

DDO82	1030	+70 37	157.574	WFC-FIX	2006-	ACS	F475W
	37.80	13.0			09-22		

F606W

F814W

BK3N	0953	+6858	148.844	WFC1-FIX	$2006-$ 47.81	06.7	
$09-20$							

F814W

Notes. All data is from GO-10915, except NGC 55 and NGC 3109 wide fields, which are from DD-11307. Entries with reduced precision in the listings for R.A. and decl. indicate a representative center for dithered observations. Multiple dates for a given field indicate the start times for the earliest and the latest observations of that field. Note that many fine guidance sensor problems occurred during observations for GO-10915, and that not all data in the archive under this PID is useable; only high quality observations are included in this table.

Download table as:
ASCII Typeset images: 1

2.2. Properties of the Final Sample

The volume-limited sample defined above contains a rich assortment of galaxies. The range of distances, luminosities (in B and K), and morphological types of the sample galaxies can be seen in Figure 1. Galaxy absolute magnitudes span from brighter than $M_{B}=-20($ M81
and NGC 253, the dominant galaxies in the M81 group and the Sculptor filament), down to fainter than $M_{B}=-9$, comparable to the Carina dwarf spheroidal in the Local Group. K-band total magnitudes were adopted from Jarrett et al. (2003) or Vaduvescu et al. (2005) when available, or inferred from B-band magnitudes assuming $B-K \sim 2.86$, based on the estimates in Mannucci et al. (2001) for dwarf irregular spectral types.

© Zoom In Q Zoom Out

$\underset{\sim}{2}$ Reset image size

Figure 1. Distribution of the ANGST sample galaxies in distance and absolute magnitude (left: B band; right: K band). Points are color-coded by morphological type (red: $T \boxtimes 0$; green: $1 \boxtimes T \boxtimes 9$, blue: $T=10$). The majority of early type galaxies are dwarf ellipticals in the dense M81 group. The galaxies to the left of the vertical line contain less than 1% of the integrated B - or K-band luminosity in the survey volume. K-band absolute magnitudes have been estimated for some of the low-luminosity galaxies Mannucci et al. (2001).

Download figure:

Standard image

High-resolution image

Export PowerPoint slide

As for any volume-limited sample, the distribution of luminosities is strongly weighted toward dwarf systems. Roughly 90% of the galaxies in the ANGST volume are fainter than the Large Magellanic Cloud,
and 80% are fainter than the Small Magellanic Cloud. Integrating the luminosities of the galaxies, 99% of the B-band luminosity is contained in galaxies brighter than $M_{B}=-13.7$ (33% by number). In the K band, which presumably is a better tracer of the stellar mass, 99% of the luminosity is contained within only 17% of the galaxies ($M_{K}<-17.5$). The large number of low-luminosity systems is also reflected in the distribution of morphological types. Only 17% of the galaxies have morphological types characteristic of spirals ($1 \boxtimes T \boxtimes 9$), while 58% are classified as dwarf irregulars and 25% as dwarf ellipticals. In spite of the large population of dwarf ellipticals, there are no massive early types in the sample. NGC 404 is classified as an S0, but has relatively low luminosity and an extended gas disk (del Río et al. 2004). The earliest massive spiral in the sample is M81, with a morphological type of Sab.

The sample galaxies reside in diverse environments. There are at least four distinct groups with a range of richnesses-the dwarf dominated NGC 3109 group, two clumps in the Sculptor filament (one at NGC 55/NGC 300 and one at NGC 253/NGC 247), and the rich M81 group. Several of Tully et al. (2006)'s "dwarf groups" are also included in the ANGST survey volume $(14+12,14+1314+07,14+08$; the first two are the NGC 3109 and NGC $55 /$ NGC 300 groups mentioned above). Group membership is also included in Table 1. Some of these groups can be seen in Figure 2, where we show the three-dimensional distribution of the survey galaxies, using updated distances from Section 12. ${ }^{19}$

© Zoom In Q Zoom Out
\mathcal{T} Resetimage size

Figure 2. Three-dimensional space distribution of the ANGST sample galaxies. Galaxies are color-coded by morphological type (red: $T \boxtimes 0$; green: $1 \boxtimes T \boxtimes 9$, blue: $T=10$), as in Figure 1. Larger symbols indicate galaxies brighter than $M_{B}=-16.0$. The large clump of galaxies in the upper left is the rich M81 group. The two clumps under the plane along the right hand axis are the closer NGC 55/NGC 300 clump and the more distant NGC 247/NGC 253 subclump along the Sculptor filament. The bright galaxy at the center of the dwarf cloud on the left is NGC 4214, and the bright isolated early-type galaxy to the right is NGC 404. The circles are drawn at intervals of $1 \boxtimes \mathrm{Mpc}$, along the equatorial plane. Distances are taken from Table $\underline{5}$. Note that not all galaxies within $4 \boxtimes \mathrm{Mpc}$ are plotted due to ANGST's $|b|>20^{\circ}$ selection criteria.

Download figure:

3. ACS OBSERVING STRATEGY

When designing an observing strategy for the ANGST sample, we balanced the limited number of orbits (295, down from an initial request of 555) against the goal of simultaneously recovering the SFH of the volume and establishing a general purpose imaging archive. We aimed to maximize uniformity, depth, and versatility, while making efficient use of the allocated orbits and the data already in the archive.

As part of this strategy, we chose to allocate a larger fraction of the orbits to the galaxies with the most stars, which contained either 99% of the stars or 99% of the recently formed stars. These galaxies fall to the right of the vertical lines in the right- and left-hand panels of Figure 1.

The full radial extent of all galaxies was imaged in at least two filters. For dwarfs, these wide field tiles could be acquired in a single pointing. Larger, angularly extended galaxies were each imaged with a radial strip of overlapping ACS tiles extending from the galaxy's center to its outskirts. In addition to the wide fields, deep fields with high completeness in the red clump were planned for the 12 galaxies that dominate the K-band luminosity of the ANGST volume; this depth provides strong constraints on the ancient SFH (e.g., Dolphin 2002). Another 16 galaxies within $\sim 2.5 \boxtimes \mathrm{Mpc}$ would reach a comparable depth from their wide field tilings alone. In addition to the two filters in the standard wide field tilings, the 23 galaxies that dominate the recent star formation density (as assessed in the B band) would be imaged in three filters to permit extinction corrections and multi-wavelength source identification. Finally, archival imaging of comparable depth to the new observations would be used when possible.

We now discuss the details of the wide-field tilings, the deep fields, the choice of filters, and the exposure times. In Section 4, we discuss how this strategy was modified after ACS failed during our program's execution.

3.1. Wide Field Tiling

The wide field tilings were designed for efficient multi-filter coverage of each galaxy's radial extent. Thanks to ACS's large field of view (FOV), dwarf galaxies could be imaged with a single pointing. For smaller dwarf galaxies, the galaxy center was aligned with the center of the WFC1 chip to avoid the chip gap's occluding the center of the galaxy. For the larger dwarf galaxies DDO 44 and DDO 82 , the center was placed slightly above the chip gap. For galaxies whose radial extents were larger than could be imaged in a single pointing, we adopted a set of radial tiles extending from the center of the galaxy out to the position of the deep field, along the major axis in whichever direction required the smallest number of tiles. To allow flexible telescope scheduling, the tiles were allowed to be at any multiple of a 90° rotation from the major axis, with a $\pm 5^{\circ}$ leeway. Adjacent tiles were overlapped by $22^{\prime \prime}$ to allow complete coverage throughout the permitted range of telescope roll angles. All tiles were dithered to fill the chip gap and to remove cosmic rays and hot pixels. In the ANGST target naming scheme, tiles are numbered from the outermost tile inward. The resulting field locations are shown superimposed on images from the Digitized Sky Survey in Figures $\underline{3}-\underline{6}$, for both the ANGST observations and the archival observations described below (Tables $\underline{2}$ and $\underline{3}$).

© Zoom In Q Zoom Out
$\mathcal{2}$ Resetimage size

Figure 3. Field positions of images included in (Tables $\underline{2}$ and $\underline{3}$). Figures are ordered from the upper left to the bottom right. (a) Antlia; (b) SexA; (c) N3109; (d) SexB; (e) KKR25; (f) KK230; (g) E410005; (h) E294-010; (i) N55; (j) I5152; (k) GR8; (l) N300; (m) UA438; (n) DDO187; (o) KKH98; (p) DDO125; (q) U8508; (r) KKH86; (s) DDO99; (t) DDO190.

E0 Export PowerPoint slide

Figure 4. Field positions of images included in Tables $\underline{2}$ and $\underline{3}$, as described in Figure 3. Figures are ordered from the upper left to the bottom right. (a) DDO113; (b) N4214; (c) DDO181; (d) N3741; (e) N4163; (f) N404; (g) UA292; (h) U8833; (i) DDO183; (j) N2366; (k) DDO44; (1) E321-014; (m) U4483; (n) N2403; (o) DDO6; (p) KKH37; (q) HoII; (r) KDG2; (s) MCG9-20-131; (t) E540-032.

Download figure:

(n) Standard image

[0 High-resolution image

Export PowerPoint slide

@ Zoom In Q Zoom Out
$\mathcal{\sim}$ Resetimage size

Figure 5. Field positions of images included in Tables $\underline{2}$ and $\underline{3}$, as described in Figure $\mathbf{3}$. Figures are ordered from the upper left to the bottom right. (a) FM1; (b) KK77; (c) KDG63; (d) M82; (e) KDG52; (f) DDO53; (g) N2976; (h) KDG61; (i) M81; (j) N247; (k) HoIX; (l) KDG64; (m) IKN; (n) KDG73; (o) DDO78; (p) F8D1; (q) BK5N; (r) N3077; (s) HoI; (t) A0952+69.

Download figure:

[High-resolution image

E Export PowerPoint slide

Figure 6. Field positions of images included in Tables $\underline{2}$ and $\underline{3}$, as described in Figure $\mathbf{3}$. Figures are ordered from the upper left to the bottom right. (a) N253; (b) HS117; (c) DDO82; (d) BK3N; (e) I2574; (f) Sc22.

Download figure:

© Standard image

 High-res olution imageExport PowerPoint slide

Table 3. Archival Observations

Catalog Name	Target Name	PID	R.A. (J2000)	Decl. (J2000)	Ang. Sep. (')	V3 PA (deg)	Apertu
Antlia	ANTLIA	10210	1004	-2719	0.14	247.479	WFC1
			03.77	47.2			

Catalog Target Name PID R.A. Decl. Ang. V3 PA Apertu
 56.930

KKR25 KKR25
$8601 \quad 1613+5421 \quad 0.83 \quad 358.523$ WF3-FL $47.47 \quad 27.7$
$\begin{array}{llllllll}\text { KK230 } & \text { KK230 } & 9771 & 1407 & +3503 & 0.00 & 18.337 & \text { WFC }\end{array}$ $10.70 \quad 37.0$

E410- ESO410-005 $105030015 \quad-3210$ 0.02 ~44 WFC
005
31.447

E294- ESO294-010 $10503 \quad 0026$-4151 0.03 ~37 WFC 010 33.419

N55 NGC $0055 \quad 97650014 \quad-3911 \quad 3.21 \quad$ 174.052 \quad WFCEN $53.60 \quad 48.0$

N55 NGC 0055- $97650015 \quad-3914 \quad 4.47 \quad$ 245.349 \quad WFCEN DISK $31.03 \quad 12.0$

N300 NGC 300-1 94920055 -3741 8.05 80.254 \quad WFC $34.12 \quad 25.4$

Catalog Name	Target Name	PID	$\begin{aligned} & \text { R.A. } \\ & \text { (J2000) } \end{aligned}$	$\begin{gathered} \text { Decl. } \\ \text { (J2000) } \end{gathered}$	Ang. Sep. (')	$\begin{gathered} \text { V3 PA } \\ \text { (deg) } \end{gathered}$	Apertu
N300	NGC 300-2	9492	$\begin{aligned} & 0054 \\ & 51.93 \end{aligned}$	$\begin{aligned} & -3738 \\ & 56.1 \end{aligned}$	2.04	92.050	WFC
N300	NGC 300-3	9492	$\begin{aligned} & 0054 \\ & 55.32 \end{aligned}$	$\begin{aligned} & -3741 \\ & 48.9 \end{aligned}$	0.94	171.953	WFC
N300	NGC 300-4	9492	$\begin{aligned} & 0054 \\ & 23.12 \end{aligned}$	$\begin{aligned} & -3734 \\ & 19.9 \end{aligned}$	8.94	80.060	WFC
N300	NGC 300-5	9492	$\begin{aligned} & 0054 \\ & 28.11 \end{aligned}$	$\begin{aligned} & -3738 \\ & 56.8 \end{aligned}$	5.41	240.928	WFC
N300	NGC 300-6	9492	$\begin{aligned} & 0054 \\ & 26.95 \end{aligned}$	$\begin{aligned} & -3744 \\ & 11.2 \end{aligned}$	6.17	168.956	WFC
UA438	E407-G18	8192	$\begin{aligned} & 2326 \\ & 30.92 \end{aligned}$	$\begin{aligned} & -3222 \\ & 44.4 \end{aligned}$	0.926	224.243	WF3-FL

Name

(')

DDO125 UGC7577
$8601 \quad 1227 \quad+4329 \quad 0.779 \quad$ 293.217 \quad WF3-FL $45.64 \quad 17.0$

KKH86 KKH71 $8601 \quad 1354 \quad+0414 \quad 0.786$ $36.15 \quad 08.1$

DDO99 UGC6817 $8601 \quad 1150 \quad+3852 \quad 0.809$ 292.285 \quad WF3-FD $56.60 \quad 30.7$

DDO181 UGC8651 $10210 \quad 1339+4044$ $53.82 \quad 20.7$

UA292 UGCA-292 $10905 \quad 1238$ +32 46 $40.01 \quad 01.0$

U8833 UGC8833 $10210 \quad 1354 \quad+3550 \quad 0.01 \quad 279.439 \quad$ WFC 48.6714 .7

DDO183 UGC8760 $10210 \quad 1350 \quad+3801 \quad 0.14 \quad 274.638$ WFC1 $50.98 \quad 08.0$

N2366 NGC-2366-1 $10605 \quad 0728 \quad+6911 \quad 1.19 \quad 74.02 \quad$ WFC $43.5 \quad 22$

Catalog Name	Target Name	PID	$\begin{aligned} & \text { or. A. } \\ & \text { of. } \\ & \text { (J2000) } \end{aligned}$		Ang Sep. (')	$\begin{aligned} & \text { V3PA } \\ & \text { (deg) } \end{aligned}$	Apertu
E321-	PGC39032	8601	1213	-38 14	0.780	330.277	WF3-FD
014			51.38	33.8			
U4483	UGC4483	8769	0837	+69 46	0.357	164.556	PC1
			05.40	13.6			
N2403	SN-NGC2403-	10182	0736	+65 36	0.49	140.028	WFC
	PR		57.22	21.5			
N2403	NGC2403-X1	10579	0736	+65 35	2.99	95.661	WFC1
			25.56	40.1			
N2403	NGC2403-	10523	0737	+65 31	7.854	107.68	WFC
	HALO-1		52.70	31.0			
N2403	NGC2403-	10523	0737	+65 40	5.78	97.839	WFC
	HALO-6		29.37	29.1			
KKH37	KKH37	9771	0647	+80 07	0.05	319.556	WFC
			46.90	26.0			
HoII	UGC-4305-1	10605	0818	+70 42	0.92	30.76	WFC
			59.0	05			

Catalog Name	Target Name	PID	R.A. (J2000)	Decl. (J2000)	Ang. Sep.	V3 PA (deg)	Apert
HoII	UGC-4305-2	10605	0819	+7043	1.58	30.67	WFC

E540-	ESO540-030	10503	0049	-18	04	0.10	~ 74
030		21.2	33			WFC	

MCG9- CGCG-269-049 10905 1215 +52 23

E540-	ESO540-032	10503	0050	-1954	0.04	104.385	WFC
032			24.5	23			

E540- ESO540-032 $10503 \quad 0050 \quad-1954 \quad 0.04 \quad$ 69.516 \quad WFC
032 $24.51 \quad 23$

FM1 M81F6D1 $98840945 \quad+6845$ 1.06 312.999 WFC $20.55 \quad 26.5$
$\begin{array}{llllllll}\text { KK77 M81F12D1 } 9884 & 0950 & +6729 & 0.57 & 6.202 & \text { WFC }\end{array}$ $09.28 \quad 50.1$

KDG63 DDO71 $9884 \quad 1005 \quad+6633 \quad 0.84 \quad 316.241 \quad$ WFC
$15.74 \quad 16.5$

(47.940) (12000) Sep. (deg)
(')

M82	M82-POS1	10776	0956	+6944	3.50	310.02	WFCEN
		06.7	17				

| M82 | M82-POS2 | 10776 | 0955 | +6941 | 1.39 | 310.02 | WFCEN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $42.0 \quad 54$

| M82 | M82-POS3 | 10776 | 0955 | +69 | 39 | 3.48 | 310.02 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | WFCEN

M82 M82-POS4 $107760955 \quad+6937 \quad 3.44 \quad 310.02$ WFCEN
$\begin{array}{llllllll}\text { M82 } & \text { M82-POS5 } & 10776 & 09 & 56 & +69 & 39 & 1.84 \\ \text { 310.02 } & \text { WFCEN }\end{array}$ 11.855

Catalog Target Name PID 3א.A. 1Becl. Ang. V3 PA Apertu Name (J2000) (J2000) Sep. (deg) (')

KDG52 MESSIER-081- 106050823 +71 01 0.05 297.84 WFC DWARF-A 55.846

DDO53 UGC-04459 $106050834+6610 \quad 0.17 \quad 302.57$ WFC $07.0 \quad 55$
$\begin{array}{llllllll}\text { KDG61 M81K61 } & 9884 & 09 & 56 & +6835 & 0.48 & \text { 15.578 } & \text { WFC }\end{array}$ 58.7849 .6

M81 NGC3031- $10523 \quad 0957$ +69 06 9.58 117.087 WFC HALO-1 $17.23 \quad 29.3$

M81 NGC3031- $105230958 \quad+6908$ 14.37 117.321 WFC HALO-2 $04.50 \quad 52.1$
$\begin{array}{llllllll}\text { M81 M81-X-9 } & 9796 & 0957 & +6903 & 12.61 & \text { 14.181 } & \text { WFC1 }\end{array}$ $54.30 \quad 46.4$

M81	M81-X-9	9796	0957	+6903	12.61	323.352	WFC
		54.30	46.4				

Catalog	Target Name	PID	I0.49 R.A.	42.3 Decl.	Ang.	V3 PA	Apertu
Name			$(\mathrm{J} 2000)$	$(\mathrm{J} 2000)$	Sep.	(deg)	
					$\left({ }^{(}\right)$		

$\begin{array}{llllllll}\text { M81 M81-FIELD-2 } & 10584 & 0954 & +69 & 14 & 11.57 & 59.748 & \text { WFCEN }\end{array}$ $52.27 \quad 54.3$

M81 M81-FIELD-3 $10584 \quad 0954$ +69 09 9.51 64.655 WFCEN 09.1849 .5

M81 M81-FIELD-4 $10584 \quad 0954 \quad+6911 \quad 8.47 \quad 68.571$ WFCEN $41.78 \quad 06.7$

M81 M81-FIELD-5 $10584 \quad 0955 \quad+6912 \quad 8.60 \quad 329.926$ WFCEN $13.52 \quad 25.1$

M81 M81-FIELD-6 $10584 \quad 0955 \quad+6913 \quad 9.77 \quad 329.926$ WFCEN 46.0942 .4

M81 M81-FIELD-7 $10584 \quad 0954 \quad+6908 \quad 8.115 \quad 64.984$ WFCEN $17.45 \quad 27.4$

M81 M81-FIELD-7 $10584 \quad 0954 \quad+6906 \quad 6.95 \quad 329.926$ WFCEN $22.89 \quad 56.8$

Catalog Name	Target Name	PID	$\begin{aligned} & \text { 55.4. } \\ & \text { (J2000). } \end{aligned}$	$\begin{aligned} & \hline \text { 14.2 }{ }_{\text {Decl. }} \\ & \text { (J2000) } \end{aligned}$	Ang. Sep.	$\begin{gathered} \text { V3 PA } \\ \text { (deg) } \end{gathered}$	Aperto
	M81-EIELD-9	10584	0955	$+6908$	$\begin{array}{r} (') \\ 5.21 \\ \hline \end{array}$	329.862	WECEN
$\xrightarrow{\text { M81 }}$			11.57	49.8			
M81	M81-FIELD-9	10584		+69 09	5.55	329.926	WFCEN
			28.04				
M81	M81-FIELD-10	10584	0956	+69 10	7.23	334.924	WFCEN
			00.66	49.0			
M81	M81-FIELD-11	10584	0954	+69 05	5.71	65.041	WFCEN
M81	M81-FIELD-11	10584	0954	+69 04	4.94	67.905	WFCEN
			38.25	02.3			
M81	M81-FIELD-12	10584	0955	+69 05	2.49	329.927	WFCEN
			09.99				
M81	M81-FIELD-13	10584	0955	+69 05	2.05	329.919	WFCEN
			26.13	56.4			
M81	M81-FIELD-13	10584	0955	+69 06	2.76	69.764	WFCEN
			43.41	37.0			

 Name (552(80) 阿500) Sep. (deg) (')

M81	M81-FIELD-15	10584	0954	+69 00	6.25	333.265	WFCEN
			35.17	33.4			
M81	M81-FIELD-15	10584	0954	+69 01	4.67	338.616	WFCEN
			52.01	10.0			
M81	M81-FIELD-16	10584	0955	+69 02	1.80	159.951	WFCEN
			25.11	22.0			

M81 M81-FIELD-17 $105840955 \quad+69031.15 \quad 329.863$ WFCEN $40.69 \quad 02.7$

M81 M81-FIELD-17 $10584 \quad 0955$ +69 03 2.12 329.927 WFCEN $57.09 \quad 44.5$

M81 M81-FIELD-18 $10584 \quad 0956$ +69 05 5.19 69.765 WFCEN $30.51 \quad 00.8$

M81	M81-FIELD-19	10584	0954	+6857	7.45	333.321	WFCEN
			49.72	40.0			

M81	M81-FIELD-19	10584	0955	+6858	6.21	69.766	WFCEN
			07.30	15.2			

Catalog Target Name PID R.A. Decl. Ang. V3 PA Apertu
 $39.04 \quad 33.5$

M81	M81-FIELD-21	10584	0955	+6900	4.31	329.920	WFCEN
			55.25	09.3			
M81	M81-FIELD-21	10584	0956	+6900	4.64	329.927	WFCEN

M81	M81-FIELD-22	10584	0956	+6902	6.66	69.765	WFCEN
			45.03	07.3			

M81	M81-FIELD-23	10584	0955	+6855	8.70	69.767	WFCEN
			21.82	21.6			

$\begin{array}{llllllll}\text { M81 } & \text { M81-FIELD-24 } & 10584 & 0955 & +6856 & 7.55 & \text { 329.927 } & \text { WFCEN }\end{array}$ $53.57 \quad 40.0$
$\begin{array}{llllllll}\text { M81 } & \text { M81-FIELD-25 } & 10584 & 09 & 56 & +6857 & 7.72 & 69.766\end{array}$ WFCEN $26.98 \quad 56.4$

M81 M81-FIELD-26 $10584 \quad 0956 \quad+6859$ 9.06 68.603 WFCEN $59.55 \quad 13.8$

Catalog Target Name PID R.A. Decl. Ang. V3 PA Apertu Name (J2000) (J2000) Sep. (deg) (')
$\begin{array}{llllllll}\text { M81 } & \text { M81-FIELD-28 } & 10584 & 0956 & +6854 & 10.49 & 69.769 & \text { WFCEN }\end{array}$ $29.23 \quad 42.5$
$\begin{array}{llllllll}\text { M81 } & \text { M81-FIELD-29 } & 10584 & 0957 & +6855 & 11.26 & 69.768 & \text { WFCEN }\end{array}$ $01.91 \quad 56.2$

| N247 \quad NGC247 | 9771 | 0047 | -2039 | 6.55 | 263.664 | WFC |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 06.10 | 04.0 | | | |

HoIX UGC-5336	10605	0957	+69	02	0.22	325.36	WFC
		31.8	46				

$\begin{array}{llllllll}\text { KDG64 M81K64 } & 9884 & 1007 & +6749 & 0.81 & 78.806 & \text { WFC }\end{array}$ $09.85 \quad 57.9$

IKN IKN $\quad 9771 \quad 1008 \quad+6823$ 0.00 | 187.352 | WFC |
| :--- | :--- | :--- | :--- | :--- | :--- |

F8D1	GAL-	5898	0944	+6726	0.5	~ 320	PC1
	$094447+672619$		44	41			

Catalog Target Name PID R.A. Decl. Ang. V3 PA Apertu
 100441+681522 $40.3 \quad 52.7$ (')

BK5N GAL- $6964 \quad 1004 \quad+6815 \quad 0.432$ 264.979 PC1
100441+681522 $35.7 \quad 17.2$

N3077 NGC3077PHOENIX
$9381 \quad 1003+6841 \quad 3.80 \quad 335.19 \quad$ WFC $51.6 \quad 26$

| HoI UGC-5139 | 10605 | 0940 | +7111 | 0.33 | 9.156 | WFC |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 32.1 | 15 | | | |

HS117 HS117 9771021 +7106 0.00 127.715 \quad WFC $25.20 \quad 58.0$

I2574 IC-2574-1- $106051028 \quad+6824 \quad 0.33 \quad 336.13 \quad$ WFC COPY $22.9 \quad 37$

I2574 IC2574-SGS $97551028 \quad+6827$ 2.84 $21.49 \quad$ WFC 43.206

I2574 IC-2574-2 10605 10 27 +68 22 3.57 32.67 WFC $50.1 \quad 57$

Catalog Target Name PID R.A. Decl. Ang. V3 PA Apertu Name (J2000) (J2000) Sep. (deg)

| Sc22 | SCL-DE1 | 10503 | 00 | 23 | -2442 | 0.60 | 50.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | WFC

Notes. Entries with reduced precision in the listings for R.A. and decl. indicate a representative center for dithered observations. Multiple dates for a given field indicate the start times for the earliest and the latest observations of that field. Angular separation refers to separation between the aperture position and the catalog coordinates in Table 1. Field names indicate the titles given in the archive. Observations lacking multiple filters at nearly the same position and alignment are not included. [a] Observations for N4190 were proprietary at the time this paper was submitted; the ir photometry will be added to the data release when it becomes public. References for published CMDs from the associated data are given in the last column: (1) Tully et al. 2006; (2) Dohm-Palmer et al. 2002; (3) Karachentsev et al. 2006; (4) Weisz et al. 2008; (5) Seth et al. 2005a; (6) Butler et al. 2004; (7)

Rizzi et al. 2006; (8) Caldwell et al. 1998; (9) Karachentsev et al. 2001; (10)
Karachentsev et al. 2002c; (11) Karachentsev et al. 2002b; (12) Dolphin et al. 2001;
(13) Izotov \& Thuan 2002.

Download table as:

| ASCII Typeset images: 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Among the galaxies eligible for a full radial strip, we did not image M81 or M82. The former had complete tiling through programs GO10250 (F814W only) and GO-10584 (F435W, F606W, and some F814W in outer fields). M82 was tiled by STScI through program DD-10776 (Mutchler et al. 2007). Only the M81 photometry from GO-10584 is
presented here; the F814W tiling in GO-10250 was not aligned in either pointing or rotation with the bluer observations in GO-10584, and thus requires capabilities not included in the current data processing pipeline.

3.2. Deep Field Pointing

A single deep pointing was originally planned for each of the 12 galaxies which dominate the K-band luminosity (and presumably the stellar mass) of the local universe. The deep field exposure times were chosen to provide high completeness in the red clump region of the CMD, as described below. However, deep exposures are subject to significant stellar crowding due to the increasing number of stars at fainter magnitudes in the CMD. When stellar fields become too crowded, longer exposure times no longer decrease the photometric errors or increase the number of detected stars. Instead, the photometric uncertainties are dominated by systematic errors produced by crowded, blended point-spread functions (PSFs). To avoid this situation, the deep fields needed to be placed in regions of the galaxies where photometric errors would not be dominated by crowding.

When placing the deep fields, we used the simulations of Olsen et al. (2003) to calculate the surface brightness below which photometric errors would be less than 0.1 mag in the red clump. This limiting surface brightness depends on distance, the underlying stellar population, and the pixel scale and PSF of the camera. We found typical ACS limiting surface brightness of $\mu_{V} \sim 22.2-24.6 \boxtimes \mathrm{mag} \boxtimes \mathrm{arcsec}^{-2}$ for galaxies at $D=1.3-4 \boxtimes \mathrm{Mpc}$. These limits yielded of order 100 K stars per ACS FOV at our typical exposure time, which was consistent with our previous experience with an ACS snapshot survey (Seth et al. 2005b). The resulting limiting surface brightnesses were used to identify appropriate field locations for each of the target galaxies,
using a combination of Two Micron All Sky Survey (2MASS), Sloan Digital Sky Survey (SDSS), and deep Malin (http://www.aao.gov.au/images/) images to estimate the local surface brightness along each galaxy's major axis. The fields were allowed to have any orientation, and were contiguous with the outermost wide field tile.

3.3. Filter Choice

Imaging was carried out in three filters for the galaxies that dominate the recent star formation in the local volume (i.e., to the right of the line in the left panel of Figure 1), and two filters for all others. For the galaxies with three-filter coverage, we used F475W+F606W+F814W, which maximized the combination of wavelength coverage and throughput. The three filters are useful for identifying X-ray counterparts, HDii region nebulosity, and extinction (when combined with future UV or NIR imaging). Although the F435W filter allows for a larger wavelength baseline and disjoint wavelength coverage with F606W, its throughput is much less than that of F475W.

For the dwarf galaxies with two-filter coverage, we used a F475W+F814W filter combination, instead of the more commonly used F606W+F814W. Although F475W does not reach as far down the CMD as F 606 W for a given exposure time, it provides greater temperature sensitivity due to the longer wavelength baseline of the F475W-F814W color combination. For regions above the red clump, more scientific information can be extracted from better temperature sensitivity than from the slight gain in depth possible with F606W+F814W. This choice allowed us to better separate mainsequence stars from the blue helium burning sequence, and to derive stronger constraints on the metallicity distribution of red giant branch (RGB) stars. This effect can be seen in Figures 2-22, when comparing CMDs in F475W+F814W and F606W+F814W for galaxies with three-
filter observations (such as DDO 190). Given the very low extinctions expected in low-metallicity systems, a third filter was not deemed necessary for the faintest dwarf galaxies. For many of these, some F606W imaging is already available in the archive, largely from the SNAP-9771 and SNAP-10210 programs.

For the deep fields, the scientific demand of constraining ancient star formation requires the highest possible completeness in the red clump. Thus, the majority of time invested in deep fields was in the more traditional F606W+F814W color combination, which maximizes the depth along the RGB at the expense of lower color sensitivity. A single orbit of F475W was also included for continuity with the wide-field observing strategy, and to allow the possibility for extinction mapping in the future.

3.4. Exposure Times

Exposure times were chosen to achieve two separate goals. For the wide fields, the goal was efficient, multi-color imaging of the upper regions of the CMD, allowing good constraints on the occupation of the main sequence, the luminosity function of the blue and red helium burning sequences, the color distribution of the RGB, and the population of asymptotic giant branch (AGB) stars. For the deep field, the goal was high completeness and photometric accuracy in the red clump. We discuss the details of the wide field and deep field observations in Sections 3.4.1 and 3.4.2. A listing of the new observations taken for this program can be found in Table 2.

3.4.1. Wide Fields

The wide field observing strategy was shaped by the need to get up to three filters at each tile position. In each filter we need at least a two- or three-point dither pattern to reject cosmic rays and to cover the chip gap. Due to data volume constraints, two orbits are required to get at
least two images in each of the three filters. For crowded areas, we used the minimum two orbits for the wide-field tilings, while in the outermost wide fields, where crowding was not a limiting factor on the photometry, we used three orbits, one orbit per filter. For dwarf galaxies, we devoted one orbit to each of the two filters. Total exposure times can be found in Table 2. The typical photometric depths ($\mathrm{S} / \mathrm{N}=5$) were 28.4 in F475W and F606W, and 27.5 in F814W for a single orbit.

3.4.2. Deep Fields

The goal of the ANGST deep fields is to obtain an accurate census on the number, magnitude, and color of stars in the red clump. These stars place a strong constraint on the ancient SFH enabling the possibility of breaking the age-metallicity degeneracy present along the upper RGB. We requested deep fields for 12 galaxies in the ANGST volume with $M_{K}<-17.5$. These 12 galaxies contain 99% of the K -band luminosity within our survey volume, and thus have dominated the past total SFH. The significant time investment required to obtain CMDs reaching below the red clump meant that these exposures were limited to a single field in each galaxy.

Exposure times were chosen to obtain $\mathrm{S} / \mathrm{N} \gtrsim 10$ in both F606W and F814W for stars in the red clump. In practice, we achieved this by using the ACS Imaging Exposure Time Calculator to estimate the time necessary to reach $\mathrm{S} / \mathrm{N}=3.5$ for a G0III star normalized to $M_{V}=+1.5$ (for F606W) and $M_{I}=+0.7$ (for F814W), a magnitude below the theoretical red clump for a $[\mathrm{Fe} / \mathrm{H}]=-1.3,10 \mathrm{Gyr}$ population in the Padova isochrones (http://pleiadi.pd.astro.it/). To calculate the appropriate red clump magnitude for each galaxy, reddenings and extinctions were adopted from Schlegel et al. (1998), and distance moduli were chosen by carefully evaluating data from the literature (Karachentsev et al. 2002a, 2003; Rekola et al. 2005; Mouhcine et al. 2005; Sakai \& Madore 2001; Karachentsev et al. 2006; Freedman et al.

1994; Sakai \& Madore 1999; Tikhonov et al. 2003; Maíz-Apellániz et al. 2002; Drozdovsky et al. 2002; Gieren et al. 2004, 2005; Rizzi et al. 2006; Minniti et al. 1999; Méndez et al. 2002; Aparicio \& Tikhonov 2000) and from our own TRGB measurements using archival data. Exposure times were turned into orbit estimates using the appropriate overheads and available visibility times depending on the declination of the source. For the two deep exposures of M81 and NGC 2976 that were obtained with ACS before its failure, a single long exposure (~ 2700 s) was taken in each orbit. Each visit contained an orbit in each filter both to maximize our baseline for variable stars and to minimize the risk of obtaining incomplete filter coverage in the event of spacecraft failure. A short 100 s exposure was taken to permit photometry of the brighter stars saturated in the full orbit exposures, and a full orbit of F475W data was included for consistency with the wide fields and to enable the possibility of internal reddening estimations.

3.5. Parallels

WFPC2 observations were taken in parallel with the ACS observations in Table 2. These observations were divided evenly between F606W and F814W, and are 6' away from the center of the ACS FOV. Photometry of these fields will be reduced with the WFPC2 pipeline described below in Section \mathbb{Z}, but is not included in this initial data release.

4. WFPC2 OBSERVING STRATEGY

ACS observations for our program began in early 2006 September. Unfortunately, the wide field camera on ACS failed in late 2007 January, ~ 5 months into the execution of our program. As a result, we lost 147 orbits on the massive galaxies with deep fields ($M_{K}<-17.5$; 71% lost), and lost 44 orbits on the fainter galaxies (50% lost), for a total of 191 orbits lost from the original allocation of 295 orbits. Of the 195 orbits that were to be devoted to the deep fields, we received 41
orbits (79% lost), primarily for NGC 2976 and M81. Given the uncertainties in the upcoming HST servicing mission, we decided to continue the program with WFPC2.

Following an appeal, the Telescope Time Review Board restored 116 of the 191 lost orbits to execute deep single-pointing observations for the nearest luminous galaxies and the very closest dwarfs (NGC 55, NGC 4214, NGC 404, NGC 2403, NGC 3109, Sex B, and IC 5152). Time for wide field observations was not granted. For the majority of these galaxies, sufficient data exist in the archive for tying the large radius deep fields to the SFH of the galaxy as a whole, although with a lack of complete radial coverage and uniformity. However, NGC 55 and NGC 3109 did not have adequate radial coverage due to their large angular extents. Through a Director's Discretionary request (DD11307), we were awarded an additional 25 orbits to execute radial tilings for these two remaining galaxies (five pointings per galaxy, with two orbits per tile for NGC 3109 and three orbits per tile for NGC 55).

4.1. WFPC2 Deep Fields

Transferring the ANGST deep field observing strategy to WFPC2 required a number of modifications. The first significant change was in field placement. The wide-field chips of WFPC2 are undersampled compared to ACS, leading to larger photometric errors due to crowding at comparable surface brightnesses and exposure times. We therefore had to move the deep fields to even lower surface brightnesses (and thus larger radii) than the original ACS deep field locations. Using the Olsen et al. (2003) simulations, we recalculated the surface brightness limit at which our observations would become crowding limited. These revised limits were $\sim 1.5 \mathrm{mag}$ fainter than for ACS. These changes required shifting the fields typically another ~ 1.4 disk scale lengths further out, increasing the risk that the WFPC2 FOV would fall beyond any significant disk truncation, if present. This
appears to have happened for IC 5152, but did not affect any of the other observations.

The second adaptation was to accept slightly less photometric depth. WFPC2's throughput is substantially worse than ACS's, and thus matching the depth of the ACS deep fields would require a prohibitive nu mber of orbits. However, our experience with the ACS deep fields for M81 and NGC 2976 suggested that we could reach our scientific goals with slightly shallower data, and thus we revised our target depth to a signal-to-noise ratio of 3 at 1.5 mag below the middle of the red clump. The final change to the program was to eliminate the F475W observations, where WFPC2's sensitivity is particularly poor.

When allocating orbits, we maximized the photometric accuracy in the red clump (where F606W - F814W $\boxtimes 0.75$) by allocating twice as many orbits to F814W than to F606W. A random-walk dither pattern was adopted and full-orbit exposures were used; the number (>5) of exposures made cosmic-ray rejection straightforward without the need to CR-split the exposures during the orbit, allowing us to obtain the maximum depth possible with each orbit.

The resulting images typically had between 5000 and 15000 stars per WFPC2 chip. We checked our photometry on a chip-by-chip basis to identify potential problems or offsets due to the well-known WF4 bias anomaly. Images of WF4 showed no obvious problems with the bias, nor was the photometry noticeably worse, suggesting that the anomaly had been properly addressed by STScI's WFPC2 data reduction pipeline and/or that the chip was performing well at the time the observations were performed. We therefore are including WF4 data in the released photometric catalogs. These catalogs include a flag identifying the chip that a star fell on in the reference image, allowing the user to filter out WF4 data, if needed.

4.2. WFPC2 Wide Field Tilings

For the WFPC2 wide field tilings of NGC 55 and NGC 3109, we aimed to match the depth (in absolute magnitude) of the wide radial tiles in the more distant systems of the ANGST survey, assuring that the WFPC2 tiles were at least as deep as the shallowest wide field tiles in the survey. This depth corresponds to a signal-to-noise of 5 and 50% completeness at $M_{\mathrm{F} 814 \mathrm{~W}}=-0.5$ for the colors of the RGB. At the distances of NGC 3109 (1.3 Mpc ; $m_{\text {lim, }}^{2} 814 \mathrm{~W}=25.1$) and NGC 55 (2.1 Mpc; $m_{l i m, R 814} W=25.8$), we could reach this depth and completeness in two orbits for NGC 3109 and three orbits for NGC 55, including overheads for CR-SPLITs and guide-star acquisition, based on comparable two-orbit observations for Sextans A (Dohm-Palmer et al. 1997) and WFPC2 parallel data from the main ANGST ACS observations.

To produce a radial strip, we adopted a "Groth strip" tiling strategy of interleaved chips, with an orientation set to maximize schedulability for each target. Unlike the original ANGST ACS program, we did not tile all the way out to the deep fields, which had to be moved even further out to cope with WFPC2's lower resolution. We instead stopped the radial tiling where we are sure that we have imaged most of the recent star formation. To conserve orbits, tiles were placed on whichever side of the galaxy presented the smallest distance to the edge of the star-forming disk.

5. ARCHIVAL DATA

The original ANGST survey strategy was designed to take advantage of archival data whenever it matched or surpassed the quality of the proposed observations, in comparable filters. The failure of ACS during execution of the ANGST program further increased our reliance on archival data. In Table $\underline{3}$ we summarize the archival data sets that are incorporated into the ANGST data release, along with
papers that have published CMDs from these data independently. We have excluded data sets that have only one filter at a single position, or that have severe offsets or misalignments among multiple filters. Photometry in the latter cases is significantly compromised by the distortion of the ACS WFC, and cannot be readily produced by the ANGST pipeline. In future data releases, we will incorporate such data as needed, most notably for the F814W tilings of M81 by GO-10250.

6. ACS PHOTOMETRY

Photometry was carried out on bias subtracted, flat-fielded *_flt images (or *_crj images when available) produced by the STScI ACS pipeline OPUS versions 2006_5 through 2008_1, which used CALACS version 4.6.1. through 4.6.4. For *_crj images, the value of the readnoise reported in the CALACS header did not reflect that the final image contains two co-added readouts. In these cases, we multiplied the read noise listed in the header by $\sqrt{2}$, so that it properly accounted for the combined read noise of the co-added CR-SPLIT observations. Failure to make this correction would have produced systematic errors in the reported photometric errors.

To measure stellar photometry, we used the software package DOLPHOT느응 (Dolphin et al. 2002) including the ACS module. This package is optimized for measuring photometry of stars on dithered ACS images, where the position angle of the multiple exposures are the same, and the shifts between exposures are small ($\lesssim 30^{\prime \prime}$). To align images, DOLPHOT makes a fast initial pass through the data to find bright stars common to all of the frames, using approximate shifts supplied by the user. The final shifts between the images are then determined based on these stars. By this method, our exposures were able to be aligned to $\sim 0!01$ precision. The precision is slightly worse $(\sim 0 \% 015)$ for fields with small numbers of stars, and slightly better (~ 0
$!005)$ for more crowded fields. When aligning images, we currently do not incorporate time-dependent corrections to the geometric distortion. While improved distortion corrections would help improve the astrometric solution for the frames, it has only a second-order effect on our photometry, since the photometric accuracy depends primarily on multiple images being aligned correctly relative to each other, rather than relative to an undistorted frame. As we currently are only analyzing stacks of images with small positional shifts, taken close together in time, temporal drifts in the geometric distortion are not a limiting factor in our photometry. They will, however, be considered in future releases.

Although DOLPHOT operates on non-drizzled images, we also combined all images into a single drizzled image using the multidrizzle task with in PyRAF (Koekemoer et al. 2002), which allowed us to flag the cosmic rays in the individual images. Once the cosmic rays were identified, the photometry was measured for all of the objects using the individual, uncombined frames.

To calculate the flux of each star, DOLPHOT initially adopts the PSF calculated by Tiny Tim (Krist 1995), and scales the PSF in flux to minimize residuals throughout the image stack. The shape and width of the Tiny Tim PSF has been shown to match to the shape of the true PSF well throughout both ACS chips, based on the extensive analysis presented by Jee et al. (2007). There are slight deviations close to the bottom of Chip 1, but our tests in Section 8 find that these do not lead to noticeable systematics in the magnitude errors. DOLPHOT makes additional minor adjustments to the Tiny Tim PSF by using the brightest and most isolated stars to correct for PSF changes due to temperature variations of the telescope during orbit. These adjustments typically affect the photometry at the 0.01 mag level.

DOLPHOT also uses the most isolated stars in the field to determine
aperture corrections to the PSF magnitudes, which accounts for any systematic differences between the model and true PSF. These corrections were generally $\lesssim 0.05 \mathrm{mag}$ for a given exposure. DOLPHOT then applies the aperture corrections for each exposure, corrects for the charge transfer efficiency of the ACS detector using the coefficients given in the ACS-ISR 2004-006, 21 combines the results from the individual exposures, and converts the measured count rates to the VEGAMAG system (a system where Vega is defined to have mag=0 in all filters) using the Sirianni et al. (2005) zero points for each filter. Note that the Sirianni et al. (2005) zero points have since been updated in ACS-ISR 2007-02 to reflect the change in sensitivity due to the increase in ACS's operating temperature in 2006 July after the switch to Side 2 electronics; these changes are of order $\sim 0.015 \mathrm{mag}$, and have been propagated into the relevant photometric catalogs covered in this release. The resulting zero points match those in Table $\underline{5}$ of ACS-ISR 2007-02. We have not yet propagated zero point changes due to improvements in the calibration of the system throughput (ACS-ISR 2007-06); these changes seem to of the order of less than 0.01 in the filters covered in this data release, but still have significant unresolved uncertainties in the red wavelength regimes that dominate much of the ANGST catalogs.

DOLPHOT makes use of all exposures of a field when measuring stellar properties. This technique results in a single raw photometry output file for each field that contains measured properties of all objects detected in the field, including the position, object type (point source, extended, elongated, or indeterminate), combined magnitude, magnitude error, signal-to-noise, sharpness, roundness, $\mathbb{\boxtimes}^{2}$ fit to the PSF, crowding, and error flag (chip edge or saturated) in all filters. The output catalog contains these measurements for each star in each individual exposure as well, providing the opportunity for variability studies.

We spent significant time investigating optimal values for the dozens of parameters that can be adjusted in DOLPHOT to maximize the quality of the photometry measured from the data. Three of the parameters which had the strongest influence on our resulting photometry were the Forcel parameter, the aperture radius (RAper), and the sky fitting parameter (FitSky).

The Forcel parameter forces all sources detected to be fitted as stars, assuming that separate culling will be performed on the output file to discard non-point sources. For our crowded fields, this option was optimal, but required that special care be taken in fitting the sky. We found that with FitSky set to 1 (fit the sky in an annulus around each star), our photometry was much more heavily affected by crowding, resulting in large crowding errors for nearly all of the stars in our wide field data. With Fitsky $=2$ (fit the sky inside the PSF radius but outside the photometry aperture), we needed a small aperture radius (4 pixels), and found systematic errors ($\sim 0.02 \mathrm{mag}$) in the recovered magnitudes of artificial stars added to the data, using bright stars whose random photometric uncertainties did not overwhelm the systematic error. We found that setting FitSky $=3$ (fit the sky within the photometry aperture as a two-parameter PSF fit) allowed a larger photometry radius (10 pixels) with smaller aperture correction, and provided photometry with the smallest crowding errors and no significant systematic errors. Note that in all these methods DOLPHOT subtracts the flux of neighboring stars before measuring the sky and stellar flux; differences in the operation of FitSky therefore change the way residuals propagate, but not the total flux of nearby stars.

We provide full photometry output for each field along with culled catalogs containing the highest quality photometry. We culled the raw DOLPHOT output in two ways, releasing both a complete and a conservative (but very high quality) catalog for each field. The
complete catalog contains all sources that were not flagged by DOLPHOT as extended, elongated, extremely sharp, highly saturated, significantly cut off by the edge of the chip, or not detected at high signal-to-noise (4.0 or higher in at least two filters).

In addition to the complete catalog, we also provide a more conservative catalog of stellar photometry which has been culled to remove highly uncertain photometry. These catalogs have been filtered to only allow objects with low sharpness $\left(\left(\operatorname{sharp}_{1}+\operatorname{sharp}_{2}\right)^{2} \leqslant 0.075\right.$ and crowding $\left(\left(\right.\right.$ crowd $_{1}+$ crowd $\left.\left._{2}\right) \leqslant 0.1\right)$ in both filters. The sharpness parameter cut removes extended objects such as background galaxies missed by the earlier cuts. The crowding parameter gives the difference between the magnitude of a star measured before and after subtracting the neighboring stars in the image. When this value is large, it suggests that the star's photometry was significantly affected by crowding effects, and we therefore exclude it from our most conservative catalogs. Quality cuts based on the \boxtimes^{2} values were also considered, but they were rejected when a correlation was found between \boxtimes^{2} and the local background.

We found that these final cuts produce CMDs with well-defined features in the uncrowded field, while retaining most of the stars in high surface brightness regions. However, the cuts in the more conservative catalog may remove stars from certain interesting regions, like stellar clusters. We advise anyone interested in studying clusters or identifying stellar counterparts for specific sources to check the effects of the different parameter cuts. In Gogarten et al. (2009), we found that relaxing the crowding parameter cuts to $\mathrm{crowd}_{1}+$ crowd $_{2} \leqslant 0.6$ recovered a number of stars in clusters without dramatically compromising the quality of the photometry.

Our final catalogs include stars that may contain some saturated
pixels, as long as the saturation was not so bad that the PSF could not be reliably fitted. Saturation limits our wide field photometry to magnitudes fainter than ~ 18 and our deep field photometry to magnitudes fainter than ~ 20. In Table 4 we give the level of 50% photometric completeness for each observation, as determined from initial artificial star tests. These completeness limits are for the field as a whole, but can be expected to vary spatially within a field due to spatial variations in the degree of crowding.

Table 4. Photometry

Catalog Name	Proposal ID	Target Name	Instrument	Filter	Exposure $\text { Time }(s)$ (s)
Antlia/P29194	10210	ANTLIA	ACS	F606W	985
Antlia/P29194	10210	ANTLIA	ACS	F814W	1174
SexA/DDO75	7496	DDO75	WFPC2	F555W	19200
SexA/DDO75	7496	DDO75	WFPC2	F814W	38400
N3109	10915	NGC3109- DEEP	WFPC2	F606W	2700
N3109	10915	NGC3109- DEEP	WFPC2	F814W	3900
N3109	11307	NGC3109- WIDE1	WFPC2	F606W	2700
N3109	11307	NGC3109- WIDE1	WFPC2	F814W	3900
N3109	11307	NGC3109- WIDE2	WFPC2	F606W	2700
N3109	11307	NGC3109-	WFPC2	F814W	3900

Catalog Name	Proposal	Whayet Name	Instrument	Filter	Exposure
N3109	$\begin{array}{r} \text { ID } \\ 11307 \end{array}$	NGC3109- WIDE3	WFPC2	F606W	$\begin{aligned} & \text { Time }(s) \\ & 2400(\mathrm{~s}) \end{aligned}$
N3109	11307	NGC3109-	WFPC2	F814W	2400
		WIDE3			
N3109	11307	NGC3109-	WFPC2	F606W	2400
		WIDE4			
N3109	11307	NGC3109-	WFPC2	F814W	2400
		WIDE4			
SexB/DDO70	10915	SEXB-DEEP	WFPC2	F606W	2700
SexB/DDO70	10915	SEXB-DEEP	WFPC2	F814W	3900
KKR25	8601	KKR25	WFPC2	F606W	600
KKR25	8601	KKR25	WFPC2	F814W	600
KK230	9771	KK230	ACS	F606W	1200
KK230	9771	KK230	ACS	F814W	900
E410-005/KK3	10503	ESO410-005	ACS	F606W	8960
E410-005/KK3	10503	ESO410-005	ACS	F814W	22400
E294-010	10503	ESO294-010	ACS	F606W	13920
E294-010	10503	ESO294-010	ACS	F814W	27840
N55	9765	NGC0055	ACS	F606W	400
N55	9765	NGC0055	ACS	F814W	676
N55	9765	NGC0055-	ACS	F606W	676
N55	9765	NGC0055-	ACS	F814W	700

NE5talog Name	P98158sal ID	NGGPGE5Fame DEEP	Nmstfument	Frnck	$\begin{gathered} \text { Exp8sure } \\ \text { Time (s) } \end{gathered}$
N55	10915	NGC0055-	WFPC2	F814W	1080 s)
N55	11307	DEEP	WFPC2	F606W	2000
		NGC0055-			
		WIDE1			
N55	11307	NGC0055-	WFPC2	F814W	3700
		WIDE1			
N55	11307	NGC0055-	WFPC2	F606W	1800
		WIDE2			
N55	11307	NGC0055-	WFPC2	F814W	2600
		WIDE2			
N55	11307	NGC0055-	WFPC2	F606W	2700
		WIDE3			
N55	11307	NGC0055-	WFPC2	F814W	3900
		WIDE3			
N55	11307	NGC0055-	WFPC2	F606W	2700
		WIDE4			
N55	11307	NGC0055-	WFPC2	F814W	3900
		WIDE4			
N55	11307	NGC0055-	WFPC2	F606W	2700
		WIDE5			
N55	11307	NGC0055-	WFPC2	F814W	3900
		WIDE5			
I5152/E237-27	10915	IC5152-DEEP	WFPC2	F606W	4800
I5152/E237-27	10915	IC5152-DEEP	WFPC2	F814W	9600
GR8/DDO155	10915	GR8	ACS	F475W	2244
GR8/OnO155	10915	CRR	A \subset C	F814 W	7950

Catalog Name Proposal Target Name Instrument Filter Exposure N300 10915 NGC0300- ACS F475W 14苗角 (s) (s)

N300	10915	NGC0300-	ACS	F606W	1515
		WIDE1			
N300	10915	NGC0300-	ACS	F814W	1542
		WIDE1			
N300	10915	NGC0300-	ACS	F475W	1488
		WIDE2			
N300	10915	NGC0300-	ACS	F606W	1515
		WIDE2			
N300	10915	NGC0300-	ACS	F814W	1542
		WIDE2			
N300	10915	NGC0300-	ACS	F475W	1488
		WIDE3			
N300	10915	NGC0300-	ACS	F606W	1515
		WIDE3			
N300	10915	NGC0300-	ACS	F814W	1542
		WIDE3			
N300	9492	NGC300-1	ACS	F435W	1080
N300	9492	NGC300-1	ACS	F555W	1080
N300	9492	NGC300-1	ACS	F814W	1440
N300	9492	NGC300-2	ACS	F435W	1080
N300	9492	NGC300-2	ACS	F555W	1080
N300	9492	NGC300-2	ACS	F814W	1440
N300	9492	NGC300-3	ACS	F435W	1080
N300	9492	NGC300-3	ACS	F555W	1080

$\left.\begin{array}{llllll}\begin{array}{l}\text { Catalog Name } \\ \text { N300 }\end{array} & \begin{array}{c}\text { Proposal } \\ 9492 \\ \text { ID }\end{array} & \begin{array}{l}\text { Target Name } \\ \text { NGC300-3 }\end{array} & \begin{array}{l}\text { Instrument } \\ \text { ACS }\end{array} & \begin{array}{l}\text { Filter } \\ \text { F314W }\end{array} & \begin{array}{l}\text { Exposure } \\ \text { 1440 } \\ \text { Time }\end{array}(s)\end{array}\right)$

Catalog Name DDO99/U6817	Proposal 8601	Target Name UGC6817	Instrument WFPC2	Filter F814W	Exposure 600 Time (s)
DDO190/U9240	10915	DDO190	ACS	F475W	$2274(s)$

DDO190/U9240	10915	DDO190	ACS	F606W	2301
DDO190/U9240	10915	DDO190	ACS	F814W	2265
DDO113/KDG90	10915	DDO113	ACS	F475W	2265
DDO113/KDG90	10915	DDO113	ACS	F814W	2280
N4214	10915	NGC4214-	WFPC2	F606W	15600
		DEEP			
N4214	10915	NGC4214-	WFPC2	F814W	31200
		DEEP			
DDO181/U8651	10210	UGC8651	ACS	F606W	1016
DDO181/U8651	10210	UGC8651	ACS	F814W	1209
N3741	10915	NGC3741	ACS	F475W	2262
N3741	10915	NGC3741	ACS	F814W	2331
N4163	10915	NGC4163	ACS	F475W	2265
N4163	10915	NGC4163	ACS	F606W	2292
N4163	10915	NGC4163	ACS	F814W	2250
N4163	9771	NGC4163	ACS	F606W	1200
N4163	9771	NGC4163	ACS	F814W	900
N404	10915	NGC0404-	WFPC2	F606W	39000
N404	10915	NGC0404-	WFPC2	F814W	75400
UA292	10915	UGCA292	ACS	F475W	2250

	108psal	UKacgetadame	Ansfrument	F60tew	Exposure
UA292	$\begin{array}{r} \text { ID } \\ 10915 \end{array}$	UGCA292	ACS	F814W	$\begin{gathered} \text { Time } \\ 2274(s) \\ (\mathrm{s}) \end{gathered}$
U8833	10210	UGC8833	ACS	F606W	998
U8833	10210	UGC8833	ACS	F814W	1189
DDO183/U8760	10210	UGC8760	ACS	F606W	998
DDO183/U8760	10210	UGC8760	ACS	F814W	1189
N2366	10605	NGC-2366-1	ACS	F555W	4780
N2366	10605	NGC-2366-1	ACS	F814W	4780
N2366	10605	NGC-2366-2	ACS	F555W	4780
N2366	10605	NGC-2366-2	ACS	F814W	4780
DDO44/KK61	10915	DDO44	ACS	F475W	2361
DDO44/KK61	10915	DDO44	ACS	F814W	2430
DDO44/KK61	8137	DDO44	WFPC2	F555W	12800
DDO44/KK61	8137	DDO44	WFPC2	F814W	11900
DDO44/KK61	8192	KK061	WFPC2	F606W	600
DDO44/KK61	8192	KK061	WFPC2	F814W	600
E321-014	8601	PGC39032	WFPC2	F606W	600
E321-014	8601	PGC39032	WFPC2	F814W	600
U4483	8769	UGC4483	WFPC2	F555W	9500
U4483	8769	UGC4483	WFPC2	F814W	6900
N2403	10182	$\begin{aligned} & \text { SN-NGC2403- } \\ & \text { PR } \end{aligned}$	ACS	F475W	1200
N2403	10182	$\begin{aligned} & \text { SN-NGC2403- } \\ & \text { PR } \end{aligned}$	ACS	F606W	700

Catalog Name Proposal Target Name Instrument Filter Exposure N2403 10182 SN-NGC2403- ACS F814W 700 Time (s)

N2403	10579	NGC2403-X1	ACS	F435W	1248
N2403	10579	NGC2403-X1	ACS	F606W	1248
N2403	10523	NGC2403- HALO-1	ACS	F606W	710
N2403	10523	NGC2403- HALO-1	ACS	F814W	710
N2403	10523	NGC2403- HALO-6	ACS	F606W	720
N2403	10523	NGC2403- HALO-6	ACS	F814W	720
N2403	10915	NGC2403- DEEP	WFPC2	F606W	32400
N2403	10915	NGC2403- DEEP	WFPC2	F814W	62100
DDO6	10915	DDO6	ACS	F475W	2250
DDO6	10915	DDO6	ACS	F814W	2268
HoIX/DDO66	10605	UGC-5336	ACS	F555W	4768
HoIX/DDO66	10605	UGC-5336	ACS	F814W	4768
HoI/DDO63	10605	UGC-5139	ACS	F555W	4446
HoI/DDO63	10605	UGC-5139	ACS	F814W	5936
KKH37/Mail6	10915	KKH37	ACS	F475W	2469
KKH37/Mail6	10915	KKH37	ACS	F814W	2541
KKH37/Mail6	9771	KKH37	ACS	F606W	1200

KKH37/Mail6	Pr70posal	KKH3Z ${ }^{\text {Kame }}$	Anstrument	Foritter	Exposur
HoII/DDO50	10605	UGC-4305-1	ACS	F555W	$\underset{4600}{ } \frac{\text { Tim }}{}$ (s)
H0H/DDO50	10605	UGG-4305-1	ACS	F814W	4660
HoII/DDO50	10605	UGC-4305-2	ACS	F555W	4660
HoII/DDO50	10605	UGC-4305-2	ACS	F814W	4660
KDG2/E540-030	10503	ESO540-030	ACS	F606W	6720
KDG2/E540-030	10503	ESO540-030	ACS	F814W	6720
MCG9-20-131	10905	CGCG-269-049	WFPC2	F606W	2200
MCG9-20-131	10905	CGCG-269-049	WFPC2	F814W	2400
E540-032/FG24	10503	ESO540-032	ACS	F606W	8960
E540-032/FG24	10503	ESO540-032	ACS	F814W	4480
FM1	9884	M81F6D1	ACS	F606W	17200
FM1	9884	M81F6D1	ACS	F814W	9000
KK77	9884	M81F12D1	ACS	F606W	17200
KK77	9884	M81F12D1	ACS	F814W	9000
KDG63/KK83	9884	DDO71	ACS	F606W	17200
KDG63/KK83	9884	DDO71	ACS	F814W	9000
M82	10776	M82-POS1	ACS	F435W	1800
M82	10776	M82-POS1	ACS	F555W	1360
M82	10776	M82-POS1	ACS	F814W	700
M82	10776	M82-POS2	ACS	F435W	1800
M82	10776	M82-POS2	ACS	F555W	1360
M82	10776	M82-POS2	ACS	F814W	700

M8atalog Name	P4F778sal	Mratgreqsuame	Anstrument		Exposure
M82	10776	M82-POS3	ACS	F555W	$\begin{gathered} \text { Time }(s) \\ 1360(\mathrm{~s}) \end{gathered}$
-482	10776	M82-POS3	ACS	F814W 700	
M82	10776	M82-POS4	ACS	F435W	1800
M82	10776	M82-POS4	ACS	F555W	1360
M82	10776	M82-POS4	ACS	F814W	700
M82	10776	M82-POS5	ACS	F435W	1800
M82	10776	M82-POS5	ACS	F555W	1360
M82	10776	M82-POS5	ACS	F814W	700
M82	10776	M82-POS6	ACS	F435W	1800
M82	10776	M82-POS6	ACS	F555W	1360
M82	10776	M82-POS6	ACS	F814W	700
KDG52	10605	MESSIER-081-	ACS	F555W	5914
		DWARF-A			
KDG52	10605	MESSIER-081-	ACS	F814W	5936
		DWARF-A			
DDO53	10605	UGC-04459	ACS	F555W	4768
DDO53	10605	UGC-04459	ACS	F814W	4768
N2976	10915	NGC2976-	ACS	F475W	2418
		DEEP			
N2976	10915	NGC2976-	ACS	F606W	18716
		DEEP			
N2976	10915	NGC2976-	ACS	F814W	27091
		DEEP			
N2976	10915	NGC2976-	ACS	F475W	1570

IVIOI Catalog Name	10504 Proposal	IVIOI-riculdes Target Name	Instrument	rovow Filter	Izov Exposure
M81	105184	M81-FIELD-4	ACS	F435W	ILOQe (s)
M81	10584	M81-FIELD-4	ACS	F606W	$1200^{(\mathrm{s})}$
M81	10584	M81-FIELD-5	ACS	F435W	1200
M81	10584	M81-FIELD-5	ACS	F606W	1200
M81	10584	M81-FIELD-6	ACS	F435W	1200
M81	10584	M81-FIELD-6	ACS	F606W	1200
M81	10584	M81-FIELD-7	ACS	F435W	1200
M81	10584	M81-FIELD-7	ACS	F606W	1200
M81	10584	M81-FIELD-8	ACS	F435W	1200
M81	10584	M81-FIELD-8	ACS	F606W	1200
M81	10584	M81-FIELD-9	ACS	F435W	1200
M81	10584	M81-FIELD-9	ACS	F606W	1200
M81	10584	M81-FIELD-10	ACS	F435W	1200
M81	10584	M81-FIELD-10	ACS	F606W	1200
M81	10584	M81-FIELD-11	ACS	F435W	1200
M81	10584	M81-FIELD-11	ACS	F606W	1200
M81	10584	M81-FIELD-12	ACS	F435W	1200
M81	10584	M81-FIELD-12	ACS	F606W	1200
M81	10584	M81-FIELD-13	ACS	F435W	1200
M81	10584	M81-FIELD-13	ACS	F606W	1200
M81	10584	M81-FIELD-14	ACS	F435W	1200
M81	10584	M81-FIELD-14	ACS	F606W	1200

	$\begin{aligned} & 10584 \\ & \text { Proposal } \end{aligned}$	MIVI-FIELD-I5	ACS	F435W Filter	Exposure
M81	105184	M81-FIELD-15	ACS	F606W	120̇o (s)
M81	10584	M81-FIELD-16	ACS	F435W	$\begin{array}{r} (\mathrm{s}) \\ 1200^{2} \\ \hline \end{array}$
M81	10584	M81-FIELD-16	ACS	F606W	1200
M81	10584	M81-FIELD-17	ACS	F435W	1200
M81	10584	M81-FIELD-17	ACS	F606W	1200
M81	10584	M81-FIELD-18	ACS	F435W	1200
M81	10584	M81-FIELD-18	ACS	F606W	1200
M81	10584	M81-FIELD-19	ACS	F435W	1200
M81	10584	M81-FIELD-19	ACS	F606W	1200
M81	10584	M81-FIELD-20	ACS	F435W	1200
M81	10584	M81-FIELD-20	ACS	F606W	1200
M81	10584	M81-FIELD-21	ACS	F435W	1200
M81	10584	M81-FIELD-21	ACS	F606W	1200
M81	10584	M81-FIELD-22	ACS	F435W	1200
M81	10584	M81-FIELD-22	ACS	F606W	1200
M81	10584	M81-FIELD-23	ACS	F435W	1200
M81	10584	M81-FIELD-23	ACS	F606W	1200
M81	10584	M81-FIELD-24	ACS	F435W	1200
M81	10584	M81-FIELD-24	ACS	F606W	1200
M81	10584	M81-FIELD-25	ACS	F435W	1200
M81	10584	M81-FIELD-25	ACS	F606W	1200
M81	10584	M81-FIELD-26	ACS	F435W	1200

M81 ${ }^{\text {atalog Name }}$	Propor	M81-FIELD-26	ACS	F606W	Exposur
M81	10584	M81-FIELD-27	ACS	F435W	15ime
					(s)
-M81	10584	M81-EIELD-27	ACS	E606W	1580
M81	10584	M81-FIELD-27	ACS	F814W	1595
M81	10584	M81-FIELD-28	ACS	F435W	1565
M81	10584	M81-FIELD-28	ACS	F606W	1580
M81	10584	M81-FIELD-28	ACS	F814W	1595
M81	10584	M81-FIELD-29	ACS	F435W	1565
M81	10584	M81-FIELD-29	ACS	F606W	1580
M81	10584	M81-FIELD-29	ACS	F814W	1595
M81	10915	M81-DEEP	ACS	F475W	2418
M81	10915	M81-DEEP	ACS	F606W	24132
M81	10915	M81-DEEP	ACS	F814W	29853
N247	10915	NGC0247-	ACS	F475W	2253
		WIDE1			
N247	10915	NGC0247-	ACS	F606W	2280
		WIDE1			
N247	10915	NGC0247-	ACS	F814W	2250
		WIDE1			
N247	10915	NGC0247-	ACS	F475W	1480
		WIDE2			
N247	10915	NGC0247-	ACS	F606W	1507
		WIDE2			
N247	10915	NGC0247-	ACS	F814W	1534
		WIDE2			

NZ47 Catalog Name	$\begin{aligned} & 10915 \\ & \text { Proposal } \end{aligned}$ ID	Target Name WIDE3	ACS Instrument	F475W Filter	$\begin{aligned} & \text { Expo } \\ & \text { Expore } \\ & \text { Time }(s) \end{aligned}$
N247	10915	NGC0247-	ACS	F606W	
		WHDE3			
N247	10915	NGC0247-	ACS	F814W	1534
		WIDE3			
HoIX/DDO66	10605	UGC-5336	ACS	F555W	4768
HoIX/DDO66	10605	UGC-5336	ACS	F814W	4768
KDG64/KK85	9884	M81K64	ACS	F606W	17200
KDG64/KK85	9884	M81K64	ACS	F814W	9000
IKN	9771	IKN	ACS	F606W	1200
IKN	9771	IKN	ACS	F814W	900
KDG73	10915	KDG73	ACS	F475W	2250
KDG73	10915	KDG73	ACS	F814W	2274
DDO78/KK89	10915	DDO78	ACS	F475W	2274
DDO78/KK89	10915	DDO78	ACS	F814W	2292
F8D1	5898	GAL-	WFPC2	F555W	9000
		094447+672619			
F8D1	5898	GAL-	WFPC2	F814W	15200
		094447+672619			
F8D1	5898	GAL-	WFPC2	F555W	9000
		094447+672619			
F8D1	5898	GAL-	WFPC2	F814W	11400
		094447+672619			
BK5N	5898	GAL-	WFPC2	F555W	5400
		$100441+681522$			

BK5N Tog Name	Proposal ID	GAL-get Name $100441+681522$	$\begin{aligned} & \text { WFPC2 } \\ & \text { Instrument } \end{aligned}$	F8ilder	11400 Exposure Time (s)
BK5N	6964	GAL-	WFPC2	F555W	156600
BK5N	6964	100441+681522	WFPC2	F814W	21340
		GAL-			
		100441+681522			
N3077	9381	NGC3077-	ACS	F435W	6000
		PHOENIX			
N3077	9381	NGC3077-	ACS	F555W	9600
		PHOENIX			
N3077	9381	NGC3077-	ACS	F814W	19200
		PHOENIX			
N3077	10915	NGC3077-	ACS	F475W	1570
		WIDE1			
N3077	10915	NGC3077-	ACS	F606W	1596
		WIDE1			
N3077	10915	NGC3077-	ACS	F814W	1622
		WIDE1			
HoII/DDO50	10605	UGC-4305-1	ACS	F555W	4660
HoII/DDO50	10605	UGC-4305-1	ACS	F814W	4660
HoII/DDO50	10605	UGC-4305-2	ACS	F555W	4660
HoII/DDO50	10605	UGC-4305-2	ACS	F814W	4660
HoIX/DDO66	10605	UGC-5336	ACS	F555W	4768
HoIX/DDO66	10605	UGC-5336	ACS	F814W	4768
HoI/DDO63	10605	UGC-5139	ACS	F555W	4446
HoI/DDO63	10605	UGC-5139	ACS	F814W	5936
$\Delta \mathrm{no5}$) + ¢0	10015	Δ nor? +60	$\Delta \Gamma \mathrm{C}$	Fイ75ist	วารก

Catalog Name	Proposal				
A0952+69	Target Name	Instrument	Filter N253	A0952+69	ACS

N25atlog Name	$\begin{gathered} \hline \text { p989psal } \\ \text { ID } \end{gathered}$	NGGी WIDE5	Anstrument	Fgrate	Exp8s sure Time (s)
N253	10915	NGC0253-	ACS	F814W	153 (s)
		WIDE5			
N253	10523	NGC0253-	ACS	F606W	680
		HALO-11			
N253	10523	NGC0253-	ACS	F814W	680
		HALO-11			
HS117	9771	HS117	ACS	F606W	1200
HS117	9771	HS117	ACS	F814W	900
DDO82	10915	DDO82	ACS	F475W	2400
DDO82	10915	DD082	ACS	F606W	2454
DD082	10915	DDO82	ACS	F814W	2442
BK3N	10915	BK3N	ACS	F475W	2250
BK3N	10915	BK3N	ACS	F814W	2265
12574	10605	IC-2574-1-	ACS	F555W	4784
		COPY			
12574	10605	IC-2574-1-	ACS	F814W	4784
		COPY			
12574	10605	IC-2574-2	ACS	F555W	4784
12574	10605	IC-2574-2	ACS	F814W	4784
12574	9755	IC2574-SGS	ACS	F435W	6000
12574	9755	IC2574-SGS	ACS	F555W	6400
12574	9755	IC2574-SGS	ACS	F814W	6400
Sc22	10503	SCL-DE1	ACS	F606W	17920

Notes. Exposure times may differ from those in Table $\underline{3}$ when individual fied ${ }^{(d)}$
were unusable.

Download table as:
ASCII Typeset images: 1 2

3
4
5
6

While these cuts do an excellent job of restricting the catalogs to stellar sources, we have noted occasional limits to star-galaxy separation near the photometric limits of the data, and spurious "stellar" sources in the diffraction spikes of extremely bright stars. If these issues are of critical importance for a particular scientific project, we recommend additional culling using information from galaxyspecific photometry packages such as SExtractor (Bertin \& Arnouts 1996) to mask out possible sources of contamination.

We also note that star-galaxy separation is frequently impossible for sources near the photometric limit, even in high-resolution HST data. Some fraction of the faintest sources in the photometric catalogs are therefore likely to be unresolved background galaxies. We do not think that these sources are a significant issue for most analyses, however, since they represent a negligible fraction of the sources in the main body of most galaxies. To quantify this, we can use the WFPC2 field for IC5152. This field has a completeness limit of 26.45 mag in F814W and contains 325 objects in the cleaned *.gst catalog (described below), over an area of $5.65 \mathrm{arcmin}^{2}$. The field unfortunately fell beyond the radius where IC5152's disk truncates, and thus the majority of the 325 objects are likely to be either foreground MW stars or unresolved background galaxies. We can then take 57.5 stars per
square arcminute to be the upper limit for the contamination in observations of this depth.

We can scale the IC5152 data to other completeness limits, using the observed galaxy number counts given in Figure 3(b) of Windhorst et al. (2008). Over the range of depths for the ANGST data, the slope in the galaxy number counts scales as $\log _{10}\left(N_{1} / N_{2}\right) \boxtimes 0.32\left(m_{\text {lim,1 }}-m_{\text {lim,2 }}\right)$. We have applied this scaling relation to the data in Table 4 to calculate the upper limit on the fraction of sources that could potentially be contaminants in each field. After IC5152 itself (which has 100\% contamination by definition), the next highest contamination fraction is 35% for an outer halo field of M81 (NGC3031-HALO-2), which lies well beyond the main body of the galaxy. All other contamination fractions are less than 23%, and 90% have maximum contamination fractions of less than 10%. Given that most ANGST targets take up less than one third of the total chip area, the contribution of unresolved galaxies to the CMD is likely to be less than 3% within the galaxy radius in almost all cases.

7. WFPC2 PHOTOMETRY

After the failure of ACS and the transfer of our program to WFPC2, we adopted the WFPC2 pipeline previously used by Holtzman et al. (2006) for their archival study of Local Group dwarfs. We briefly summarize the key features of the pipeline here, but refer the interested reader to the more extensive documentation in Holtzman et al. (2006).

The Holtzman et al. (2006) pipeline operates on images processed with the standard STScI baseline processing. Photometry is performed using HSTphot (Dolphin 2000), a predecessor of DOLPHOT that is optimized for WFPC2 images. HSTphot shares DOLPHOT's basic strategy of using Tiny Tim PSFs supplemented with image-based aperture corrections to derive photometry from unstacked images that
have not been distortion corrected or drizzled. HSTphot adopts the photometric calibration given in Holtzman et al. (1995), updated with improved calibrations from http://purcell.as.arizona.edu/wfpc2 calib/. Note that the WFPC2 photometric system is defined such that Vega has a magnitude in each WFPC2 filter corresponding to Vega's magnitude in the nearest UBVRI filter; the different definition of the zero points in the WFPC2 and ACS photometric systems leads to offsets of 0.02-0.04 mag between the calibrated magnitudes of the two instruments (see Section 8.2).

The only significant difference from the Holtzman et al. (2006) pipeline is that the current version of HSTphot uses the latest (2008 July) CTE corrections derived by A. Dolphin (http://purcell.as.arizona.edu/wfpc2 calib/). Compared to the Dolphin et al. (2002) prescription, the new CTE calibration no longer assumes that background and stellar brightness factors are independent, leading to somewhat fainter WFPC2 magnitudes than previous calibrations, and many fewer systemic offsets in the residuals. Using a typical ANGST wide field observation as a baseline, the switch to the new CTE correction changes the CTE correction for a $V=22 \mathrm{mag}$ star from 0.052 mag to 0.115 mag in F606W and from 0.067 mag to 0.123 mag in F 814 W , for a background sky level of ~ 100 counts pixel ${ }^{-1}$ in both filters. For a fainter $V=28 \mathrm{mag}$ star, the CTE changes from 0.328 mag to 0.214 mag in F 606 W and from 0.438 mag to 0.238 mag in F814W. The much lower level of residuals in the new CTE calibration suggests accuracy in the bright end of $0.01-0.02 \mathrm{mag}$. At the fainter end, it is much more difficult to assess any systematic offsets, as they are much smaller than the photometric uncertainties.

After processing by the Holtzman et al. (2006) pipeline, we integ rate the photometry into the database shared by the main ACS pipeline. Slight differences in the WFPC2 and ACS keywords used the released

8. PHOTOMETRICTESTS

The photometric pipeline produces catalogs of multi-filter photometry and estimates of the photometric uncertainty for each measurement. These uncertainties include Poisson flux errors, uncertainties in the sky determination, and uncertainties in the subtraction of neighboring objects. They do not include systematic errors due to spatial and temporal variation of the PSF (i.e., Jee et al. 2007; Rhodes et al. 2006; ACS ISR 07-12, ACS-ISR 06-01), in the absolute calibration of the photometric system, and in the accuracy of the adopted CTE corrections (which were in flux at the time that this data was released). To assess the degree of systematic errors, and the accuracy of the reported uncertainties, we have performed a series of consistency checks to measure shifts in the photometry of individual stars measured multiple times, in different portions of the FOV, and for different instruments. All tests use the conservative photometric catalogs, to allow the greatest sensitivity to systematic errors.

8.1. Repeated ACS Measurements

We first analyze the magnitude difference between stars measured in two individual single-orbit F814W ACS exposures from the M81 deep field. The exposures were taken during a single visit, which minimizes any temporal changes in the PSF. The exposures also had only modest ($0!1-0!2$) dithers between them, allowing us to minimize systematic errors in modeling the spatial variations in the PSF. Crowding errors should likewise be minimal, given the low stellar density with in the field. This test case therefore offers the "best case scenario" for agreement between repeated measurements, and sets a lower bound to our expected error distribution in less than optimal cases.

To measure magnitude differences closer to the "worst-case scenario"
for ACS, we also analyze repeated measurements of stars that fall in the overlap region in the wide field tiling of NGC 300, between WIDE1 and WIDE2. These stars lie in the most highly distorted regions of the ACS chip, and have close to the maximum possible offset in their locations on the chips between the two images, making them a highly sensitive test of the uncertainties produced by errors in the PSF that DOLPHOT ad opts from Tiny Tim. The images were also taken two days apart in separate visits, making them somewhat sensitive to temporal changes in the PSF as well. However, as there was little change in the Yposition of the stars, this comparison has no sensitivity to systematic errors produced by CTE.

Finally, we measure the magnitude differences between the measured and the "true" magnitudes of artificial stars, added to the same overlap region analyzed above for NGC 300. In this case, the stars are recovered with a PSF that is identical to that used for generating the artificial stars. This case therefore minimizes effects due to PSF uncertainty. However, it remains sensitive to errors due to Poisson variations in the flux and the sky background, and due to contamination from nearby stars. Note that the error distributions are expected to be different from the previous two tests, which probed magnitude differences between repeated measurements of stars with identical crowding and sky backgrounds, not the magnitude differences from truth.

In Figure Z, we plot the cumulative distribution of magnitude differences between repeated measurements of individual stars, scaled by the quadrature sum of the uncertainties reported in the individual measurements (i.e., $\boxtimes m / \boxtimes_{m}$, where $\boxtimes m \boxtimes m_{1}-m_{2}$ and $\boxtimes^{2}{ }_{m}=\boxtimes^{2}{ }_{m 1}+\boxtimes^{2}{ }_{m 2}$ and m_{1} and m_{2} refer to the measurements of a single star in two different images). The distributions are generated for all stars in a limited magnitude range, in steps of 1 mag , with fainter bins plotted with darker lines. The distributions for brighter stars have insufficient
numbers of stars to be reliable, and are not plotted. In red, we plot the distribution of scaled magnitude differences that would be expected if the magnitude differences were distributed as a Gaussian with width \boxtimes_{m}. The left panel contains only stars in the overlap region (~ 600 pixels wide), and the right panel contains stars for the whole frame.

Figure 7. Cumulative distribution of F814W magnitude differences between stars measured in two widely separated but overlapping ACS exposures between NGC 300's WIDE1 and WIDE2 (left), and between stars measured in successive one-orbit ACS exposures at the same pointing in M81's deep field (right). Magnitude differences are scaled by the reported magnitude error for each star, added in quadrature for the case of repeat measurements. The distributions are calculated in bins of 1 mag , with the heaviest line indicating the faintest bin. The red curve indicates the expectation for a perfect Gaussian error distribution. In both cases, the distribution of errors is only slightly broader than a

Gdussidn, dinc sysiennduc errors dre swdinped vy piluluminemric uncertainties.

Download figure:

Standard image

High-res olution image

E0 Export PowerPoint slide

The distributions of magnitude differences between repeated measurements show a number of features. First, even in the worst case scenario of large positional shifts, the magnitude differences are essentially unbiased. The median magnitude difference is less than 5% of the reported uncertainty in all cases, such that repeated measurements of given isochrone features will converge on the same magnitude, even when observed with different parts of chip, or with multiple exposures. There is a slight tendency, however, for the bias to be somewhat larger when large positional shifts are present, particularly for the brighter stars. This indicates that there are indeed small systematic errors in the assumed PSF that are more noticeable when the wings of the PSF are well exposed. However, these biases will be swamped by the intrinsic random and crowding errors, as well as Poisson uncertainties, and thus can safely be neglected in almost all practical applications.

The second feature of the distributions is their tendency to be wider than a Gaussian whose width is set by the reported uncertainties. The true distributions are broader and more flat-topped than expected. This leads to larger numbers of stars at a given magnitude difference than one would predict for a perfect Gaussian error distribution. This difference is most pronounced for the brightest stars. However, even the largest shifts do not produce measurable tails beyond $5 \boxtimes_{m}$, so while the shape of the error distribution differs from a Gaussian, we do not
detect more than 1-2 stars with $\boxtimes m>5 \boxtimes_{m}$ in our analysis regions.
We can get clues to the origin of the increased width by noting that the discrepancy from a Gaussian is larger for brighter stars, for which the distribution becomes closer to a uniform "top hat." We believe that a significant fraction of this broadening is actually due to the limited precision of the errors and magnitudes reported by DOLPHOT. Catalog values of Δm and \boxtimes_{m} are quantized at the 0.001 mag level, rather than being true continuous variables. This quantization has the largest impact on the distribution of $\triangle m / \boxtimes_{m}$ when errors and magnitude differences are close to the level of quantization, as they are for the brightest stars. Not until the faintest magnitude bins do the errors approach the distribution expected for a continuous variable.

In Figure $\underline{8}$ we show the distribution of magnitude differences between the true and the measured magnitudes $\left(\boxtimes m \boxtimes m_{\text {true }}-m_{\text {measured }}\right.$, and \boxtimes_{m} $\Delta \boxtimes_{m}$,measured) of artificial stars added to and recovered from the images, for a series of magnitude bins. These distributions are quite different than the distributions for repeated measurements, as would be expected. First, the distributions are highly skewed, producing a large tail toward measured magnitudes that are brighter than the true magnitude. This skewing results when artificial stars land on or near a star that would otherwise be undetected. The flux from the previously undetected star adds to the artificial star, biasing the measured flux upward. Such a bias would not be apparent in a repeated measurement, as both measurements would share the same bias. The skewing is most severe for the faintest stars, where the additional flux from undetected stars produces the largest fractional change in the detected flux. Moreover, the sample of faint recovered stars will be biased toward stars with heavily contaminated fluxes, given that such stars are preferentially detected; this effect is reduced for brighter stars, which are detectable whether or not an undetected companion falls
with in the PSF.

© Zoom In Q Zoom Out
 $\mathcal{\sim}$ Resetimage size

Figure 8. Cumulative distribution of F814W magnitude differences between the true and recovered magnitudes in artificial stars from the same overlap region from NGC 300's WIDE1. The top panel shows the cumulative distribution of magnitude differences, scaled by the reported magnitude error for each star, added in quadrature for the case of repeat measurements. The distributions are calculated in bins of 1 mag wide, with the heaviest line indicating the faintest bin. The red curve indicates the expectation for a perfect Gaussian error distribution. The bottom panel shows the measured magnitude differences as a function of magnitude. Recovered magnitudes tend to be somewhat brighter than true magnitudes due to blending with fainter unresolved sources.

Download figure:

Standard image

 High-res olution image
E0 Export PowerPoint slide

The second feature apparent in the comparison between true and measured magnitudes is that the distributions are systematically broader than a Gaussian with a standard deviation equal to the magnitude uncertainty reported for the measured star. This deviation is not surprising, given that the uncertainties are not due solely to Poisson counting statistics, and are thus unlikely to have distributions that approach a perfect Gaussian.

8.2. WFPC2-ACS Comparison

Due to the failure of ACS, we are releasing photometry both from WFPC2 and ACS. Differences between these two photometric systems are expected due to different instrumental responses, CTE corrections, and absolute photometric calibrations between the two photometric systems. We have made an initial assessment of the degree of possible systematic offsets using observations of the dwarf elliptical DDO 44, which was observed with WFPC2 (GO-8137) in January of 2001, and with ACS as part of ANGST in September of 2006. Both data sets were processed with the respective WFPC2 and ACS pipelines described above. Stars were automatically matched between the two catalogs using the closest positional match in right ascension and declination, after solving for shifts and rotation between the two fields. We consider only pairs of stars that agreed in magnitude to within $10 \boxtimes_{m}$, where \boxtimes_{m} is the magnitude error from the quadrature sum of the error in each pair of stars; this procedure produced good matches for $\gtrsim 90 \%$ of the overlapping stars, though there are clearly occasional spurious matches as well. The resulting matched catalog was restricted further to include only stars above the approximate completeness limit of each data set ($m_{\text {F814W }}$ brighter than 26.0 and 26.1 for the WFPC2 and ACS data sets, respectively). Comparisons were made in the F814W filter, which is the only overlapping filter between the two sets of observations.

Before comparing $m_{\mathrm{F} 814 \mathrm{~W}, \mathrm{WFPC} 2}$ to $m_{\mathrm{F} 814 \mathrm{~W}, \mathrm{ACS}}$, we need to account for the different zero-point definitions in the ACS and WFPC2 photometric systems. Both systems are relative to Vega, but the ACS system defines Vega to have 0 mag in all ACS filters, while the WFPC2 system defines Vega to have a magnitude corresponding to Vega's magnitude in the nearest UBVRI filter. For F814W, Vega has $m_{\mathrm{F} 814 \mathrm{~W}, \mathrm{WFPC} 2}=0.035$. As a result, 0.035 mag must be added to the ACS F814W photometry to compare the results on the same system. 22 The systems will also differ for stars of a different color than Vega to the
extent that the system response of the ACS F814W filter+camera+detector system differs from that of WFPC2.

We examined the resulting magnitude differences as a function of magnitude, color, and Y-position on the chip. At almost all magnitude levels, the systematic errors are dominated by the random errors in the photometry (which themselves are dominated by Poisson counting variations and residual flux from crowding). However, we do detect residual systematic errors at the few percent level, which vary steadily with Y on either instrument, indicating low level problems with the adopted CTE corrections in both WFPC2 and ACS. Updated CTE corrections for ACS are in progress at STScI, but these corrections were not ready in time for reducing the data for this release. Given that these corrections are typically swamped by random errors and are smaller than current uncertainties in the stellar isoch rones that are used to interpret the CMDs, we decided to release the data as is. Subsequent releases will include the new CTE corrections as they become available. We also detected possible signs of a colordependence in the magnitude differences between the WFPC2 and ACS F814W VEGAMAGS, which appear to be larger than expected based on synthetic filter curves. A definitive diagnosis of this dependence must wait until the improved CTE corrections for ACS are implemented, but should the effect persist, then there may be an additional few percent uncertainty in the instrumental response of either WFPC2 or ACS or both.

9. ASTROMETRY

Astrometry for the photometric catalogs was initially taken from the FITS headers of the original HST images, which have astrometry that is accurate to $1-2$ ". Recently, the Hubble Legacy Archive (HLA) improved on the default astrometry using the Guide Star Catalog (GSC), the SDSS, and the 2MASS. The revised astrometric solutions have a typical
rms of $0.1-0!3$ in most cases. There are many cases in our data set where the rms is much larger, due to using faint (or non-existent) sources in the GSC, or cosmic rays in the image during matching. In these cases, new astrometric positions will have to be derived by hand. Because this process is almost always limited by the lack of astrometric standards within nearby galaxies, in many cases 1"-2" uncertainties remain, and will have to be dealt with in future releases by using a system of secondary astrometric standards defined in wide-field ground-based imaging.

Relative photometry within a given field is usually accurate to a fraction of a pixel, and the absolute position is good to a few pixels in most cases. However, in applications requiring subarcsecond accuracy of the absolute astrometric position (e.g., such as slit masks or comparisons with multi-wavelength data), users should consider making an independent astrometric solution. We will continue to release improved astrometric solutions as they become available, including time-dependent geometric distortion corrections as well.

10. DATA PRODUCTS

Binary FITS tables of photometry for the ANGST sample have been released through the Multimission Archive at STScI (MAST: http://archive.stsci.edu/prepds/angst/), and can also be accessed interactively through the project Web site
(http://www.nearbygalaxies.org). File names and field names were taken from the image headers and are of the format PROPOSIDTARGNAME, where PROPOSID is the value of the header keyword "PROPOSID" and TARGNAME is the value of the header keyword "TARGNAME." The naming conventions and column names for the files are summarized below, and are contained in the headers of the fits files themselves.
*.param: DOLPHOT parameter files: These files provide the parameters used by DOLPHOT when measuring the photometry, and are useful for interpreting the columns in the raw photometry files. These files are currently only available on the project Web site.
*.phot: Raw photometry files: These large ASCII files contain the raw output from DOLPHOT. Descriptions of the columns can be found in the DOLPHOT manual (http://purcell.as.arizona.edu/dolphot/). The listing of individual columns can be found on the project Web site.
.st.fits: Star files: these files contain the photometry of all objects classified as stars (object type $<=2$) with $\mathrm{S} / \mathrm{N}>4$ and data flag <8. Compared to the $$.gst files described below, these files will contain more objects and have higher completeness in crowded regions, at the expense of producing less well defined CMDs with more potential contamination from background galaxies. Columns are X, Y, RA, DEC, MAG1_ACS (or MAG1_WFPC2 in WFPC2 files), MAG1_STD, MAG1_ERR, CHI1, SHARP1, CROWD1, SNR1, FLAG1 (or CHIP in WFPC2 files), MAG2_ACS (or MAG2_WFPC2 in WFPC2 files), MAG2_STD, MAG2_ERR, CHI2, SHARP2, CROWD2, SNR2, FLAG2 (or FLAG in WFPC2 files). These values are defined as follows. X and Y positions are relative to positions on the drizzled reference image. The MAG1 and MAG2 values refer to the filters given in the file name and in the FITS header. ACS magnitudes are VEGAMAGs, which are calibrated by setting the zero point of each filter so that the magnitude of Vega is 0.0 (Sirianni et al. 2005). WFPC2 magnitudes are VEGAMAGs, which are calibrated by setting the zero point of each filter so that the magnitude of Vega is 0.035 in most ANGST filters (Holtzman et al. 1995). STD magnitudes have been converted from VEGAMAGs to standard Johnson-Cousins magnitudes for the nearest Johnson-Cousins filter (B, V, or Π) using the transformation equations of Sirianni et al. (2005; ACS) and Holtzman et al. (1995; WFPC2). The DOLPHOT CHI value indicates the goodness of the PSF fit, with values
of $<1.5-2.5$ being reasonable for uncrowded well-exposed stars, and values of up to $4-5$ being expected for either blended but unresolved stars, or for stars in crowded regions. The SHARP parameter indicates the deviation from a perfect PSF profile, with positive values indicating profiles that are too sharp (such as cosmic rays), and negative values indicating profiles that are too broad (such as unresolved blends, clusters, or background galaxies). The SNR value gives the signal-tonoise with which the star was detected. The CROWD parameter is in magnitudes, and indicates how much brighter the star would have been if flux from nearby stars had not been subtracted. FLAG1 and FLAG2 are the DOLPHOT quality flags for each filter as described in the manual. FLAG is the Holtzman et al. (2006) quality flag used in the Local Group Stellar Populations Archive. Further details can be found in the DOLPHOT manual.
.gst.fits: "Good" star files: These files contain the stars that pass the conservative ANGST quality cuts for sharpness and crowding (sharp $_{1}+$ sharp $\left._{2}\right)^{2} \boxtimes 0.075$ and crowd ${ }_{1}+\operatorname{crowd}_{2} \boxtimes 0.1$), in addition to the S / N and flag criteria. Columns and header information are the same as for the ${ }^{}$.st.fits files.

The field names, number of stars, and 50% completeness limits can be found in Table 4.

The MAST archive for ANGST also includes copies of the reference images to which all $X-Y$ positions are tied. For ACS, the reference image is a single dithered image in the deepest filter. For WFPC2, there are four reference images, one for each chip on the camera.

11. COLOR-MAGNITUDE DIAGRAMS

In Figures $\underline{9-22}$ we present CMDs for all of the fields listed in Tables $\underline{2}$ and $\underline{3}$. The plotted photometry is drawn from the high-quality (*.gst.fits)
catalogs. As described above, these quality cuts produce the most welldefined features in the CMD, at the expense of completeness in highcrowding regions (such as the densest stellar clusters). In regions of high stellar density on the CMD, data are plotted as contoured Hess diagrams, with contours drawn at levels of $1,1.5,2,2.5,3,4,6,8,12,16$, 20×10^{4} stars mag^{-2}. Characteristic photometric uncertainties are shown with error bars on the left side of the CMDs in Figures 9-22.

Figure 9. CMDs of galaxies in the ANGST data release (Tables $\underline{2}$ and $\underline{3}$), using photometry from the conservative *_gst catalogs. Stars
 and are plotted as a Hess diagram otherwise. The lower right of each plot shows the HST proposal ID and target name, and an arrow indicating the direction of the reddening vector. The ANGST/CNG Catalog name is given at the top of each plot. Error bars on the left indicate typical photometric errors in each magnitude bin, but do not include systematic errors derived from artificial star tests. Galaxies are ordered as in Table 1. Some fields have multiple CMDs, showing all possible filter combinations on the color axis (e.g., F475W - F606W, F475W - F814W, F606W - F814W). Fig ures are ordered from the upper left to the bottom right. (a) Antlia; (b) SexA; (c) N3109; (d) N3109; (e) N3109; (f) N3109; (g) SexB; (h) KKR25; (i) KK230; (j) E410-005; (k) E294-010; (l) N55; (m) N55; (n) N55; (o) N55; (p) N55.

Download figure:
(High-resolution image

E: Export PowerPoint slide

© Zoomin Q Zoom Out

$\mathcal{\sim}$ Resetimage size
Figure 10. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) N55; (b) N55; (c) N55; (d) I5152; (e) GR8; (f) N300; (g) N300; (h) N300; (i) N300; (j) N300; (k) N300; (l) N300; (m) N300; (n) N300; (o) N300; (p) N300.

Download figure:

| Standard image |
| :--- | :--- |
| High-resolution image |
| Export PowerPoint slide |

$\mathcal{\sim}$ Resetimage size
Figure 11. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) N300; (b) N300; (c) N300; (d) N300; (e) N300; (f) N300; (g) N300; (h) N300; (i) N300; (j) N300; (k) N300; (l) N300; (m) N300; (n) N300; (o) N300; (p) N300.

Download figure:
回 Standard image
Export PowerPoint slideHigh-res olution image

Figure 12. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) UA438; (b) DDO187; (c) KKH98; (d) DDO125; (e)
U8508; (f) KKH86; (g) DDO99; (h) DDO190; (i) DDO190; (j)
DDO190; (k) DDO113; (l) N4214; (m) DDO181; (n) N3741; (o) N4163; (p) N4163.

Download figure:

Standard image

High-re olution image

© Zoomin Q Zoom Out

$\mathcal{\sim}$ Resetimage size
Figure 13. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) N4163; (b) N404; (c) UA292; (d) UA292; (e) UA292; (f) U8833; (g) DDO183; (h) N2366; (i) N2366; (j) DDO44; (k) E321014; (l) U4483; (m) N2403; (n) N2403; (o) N2403; (p) N2403.

Download figure:
® Standard image
E Export PowerPoint slideHigh-res olution image

Figure 14. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) N2403; (b) N2403; (c) N2403; (d) DDO6; (e) KKH37; (f) HoII; (g) HoII; (h) KDG2; (i) MCG9-20-131; (j) E540-032; (k) FM1; (1) KK77; (m) KDG63; (n) M82; (o) M82; (p) M82.

Download figure:
S Standard image
E Export PowerPoint slide

© Zoomin Q Zoom Out

$\mathcal{\sim}$ Resetimage size
Figure 15. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) M82; (b) M82; (c) M82; (d) M82; (e) M82; (f) M82; (g) M82; (h) M82; (i) M82; (j) M82; (k) M82; (l) M82; (m) M82; (n) M82; (o) M82; (p) KDG52.

Download figure:

| Standard image |
| :--- | :--- |
| Exph-resolution image |
| E ExpowerPoint slide |

© Zoomin Q ZoomOut

$\mathcal{\sim}$ Resetimage size
Figure 16. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) DDO53; (b) N2976; (c) N2976; (d) N2976; (e) N2976; (f) N2976; (g) N2976; (h) KDG61; (i) M81; (j) M81; (k) M81; (1) M81; (m) M81; (n) M81; (o) M81; (p) M81.

Download figure:
Standard image

© Zoomin Q Zoom Out

$\mathcal{\sim}$ Resetimage size
Figure 17. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) M81; (b) M81; (c) M81; (d) M81; (e) M81; (f) M81; (g) M81; (h) M81; (i) M81; (j) M81; (k) M81; (1) M81; (m) M81; (n) M81; (o) M81; (p) M81.

Download figure:
Standard image
Export PowerPoint slide

Figure 18. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) M81; (b) M81; (c) M81; (d) M81; (e) M81; (f) M81; (g) M81; (h) M81; (i) M81; (j) M81; (k) M81; (l) M81; (m) M81; (n) M81; (o) M81; (p) M81.

Download figure:
Standard image

© Zoomin Q ZoomOut

$\mathcal{\sim}$ Resetimage size
Figure 19. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) M81; (b) M81; (c) M81; (d) M81; (e) M81; (f) N247; (g) N247; (h) N247; (i) N247; (j) N247; (k) N247; (l) N247; (m) N247; (n) N247; (o) HoIX; (p) KDG64.

Download figure:

| S Standard image |
| :--- | :--- |
| High-resolution image |
| Export PowerPoint slide |

© Zoomin Q Zoom Out
$\mathcal{\sim}$ Resetimage size
Figure 20. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) IKN; (b) KDG73; (c) DDO78; (d) F8D1; (e) F8D1; (f) BK5N; (g) BK5N; (h) N3077; (i) N3077; (j) N3077; (k) N3077; (l) HoI; (m) A0952+69; (n) N253; (o) N253; (p) N253.

Download figure:
Standard image
Export PowerPoint slide

Figure 21. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) N253; (b) N253; (c) N253; (d) N253; (e) N253; (f) N253; (g) N253; (h) N253; (i) N253; (j) N253; (k) N253; (l) N253; (m) HS117; (n) DDO82; (o) DDO82; (p) DDO82.

Download figure:

(1) Standard image

High-res olution image

Figure 22. CMDs of galaxies in the ANGST data release, as described in Figure 9. Figures are ordered from the upper left to the bottom right. (a) BK3N; (b) I2574; (c) I2574; (d) I2574; (e) I2574; (f) I2574; (g) Sc22.

Download figure:
Standard image
High-res olution image

E0 Export PowerPoint slide

The ANGST CMDs show a richness of detail, thanks to their depth, high photometric accuracy, and large number of stars. As a guide to interpreting the many features visible in these CMDs, in Figure $\underline{23}$ we plot simulated CMDs that show the locations of different stellar populations, as a function of age (right) and metallicity (left). The plots show the CMDs expected for a constant star formation rate colorcoded by age (left) and for an early burst of star formation colorcoded by metallicity (right), assuming photometric uncertainties
typical for our data at the inner (left panel) and the outer (right) distances of the ANGST target galaxies.

© Zoom In Q Zoom Out

\mathcal{D} Resetimage size

Figure 23. Simulated CMDs for a constant star formation rate color-coded by age (left) and for a uniform old age color-coded by metallicity (right). The panels adopt the photometric errors and biases for the NGC 0300-WIDE1 (left) and NGC 0253-WIDE1 (right) targets. The three (largely vertical) solid lines indicate several prominent sequences identified with young stellar populations: the main sequence (leftmost line), the blue core helium burning sequence (middle line), and the red core helium burning sequence (rightmost line). The enclosed polygon in the upper right indicates the region typically occu pied by AGB stars. The simulated CMDs assume the most recent Girardi et al. (2008) isochrone set.

Download figure:

Standard image
High-res olution image

Export PowerPoint slide

As has been discussed extensively elsewhere (e.g., Gallart et al. $\underline{2005,}$
and references therein), the simulated CMDs show how young stellar populations are found primarily in the upper left of the CMD, older stellar populations are found at lower luminosities and redder colors along the RGB and AGB, and metal rich stars are found at redder colors for older stellar populations. We do not plot the metallicity dependence of younger stars, since the color of the main sequence has essentially no metal dependence for the filters used in this data release.

Also overlaid on Figure 23 are tracks indicating the typical locations of young main-sequence stars, of blue and red core helium burning stars (BHeB and RHeB), and AGB stars. Among these features, the blue and red core helium burning sequences are the least widely known, since they are only visible when the CMD is well populated. We note that the HeB sequences can produce potentially confusing features in the CMD. In particular, the upper end of the blue core helium burning sequence can be easily mistaken for a "double" main sequence. Additional vertical sequences sometimes appear where BHeB stars pass through the instability strip, leading to a nearly vertical spread in magnitude for variable stars observed only at a single epoch.

12. MAGNITUDE OFTHE TIP OF THE RED GIANT BRANCH

In Table $\underline{5}$ we list the F814W magnitude of the TRGB for each galaxy. TRGB magnitudes were determined using the edge-detection filter described in Méndez et al. (2002) applied to a Gaussian-smoothed luminosity function as in Sakai et al. (1996) and Seth et al. (2005b). Although more sophisticated techniques exist (e.g., Makarov et al. 2006; Frayn \& Gilmore 2003), the TRGB in our sample is typically wellpopulated and falls well above the photometric limit of the data, making our use of the widely used and calibrated edge-detection technique adequate for an initial distance measurement.

Table 5. TRGB Meauremnts

Catalog Name	Target Name	Filters	$N_{\text {stars }}$	A_{V}	Mean Color	$\begin{gathered} M_{\mathrm{TRC}} \\ (\mathrm{~F} 814) \end{gathered}$
Antlia	ANTLIA	F606W,F814W	169	0.243	1.05	-4.04
SexA	DDO75	F555W,F814W	276	0.139	1.34	-3.95
N3109	NGC3109-WIDE1	F606W,F814W	355	0.201	1.04	-4.00
N3109	NGC3109-DEEP	F606W,F814W	263	0.201	1.01	-3.98
SexB	SEXB-DEEP	F606W,F814W	754	0.095	0.98	-3.95
KKR25	KKR25	F606W,F814W	80	0.027	1.00	-3.96
KK230	KK230	F606W,F814W	47	0.043	1.00	-4.00
E410-005	ESO410-005	F606W,F814W	194	0.042	1.06	-4.05
E294-010	ESO294-010	F606W,F814W	95	0.018	1.06	-4.05
N55	NGC0055-WIDE1	F606W,F814W	1075	0.041	1.11	-4.00

Catalog Name	Target Name	Filters	N	A	Mean Color	$\begin{aligned} & M \\ & (\mathrm{~F} 814 \mathrm{~V} \end{aligned}$
N55	NGC0055-WIDE2	F606W,F814W	1278	0.041	1.12	-3.99
N55	NGC0055-DEEP	F606W,F814W	323	0.041	1.06	-4.01
N55	NGC0055-DISK	F606W,F814W	7829	0.041	1.17	-4.02
GR8	GR8	F475W,F814W	367	0.080	2.27	-4.03
N300	NGC0300-WIDE1	F475W,F814W	865	0.039	2.67	-4.02
N300	NGC0300-WIDE1	F606W,F814W	1366	0.039	1.33	-4.02
N300	NGC300-5	F435W,F814W	829	0.039	3.40	-4.02
N300	NGC300-5	F555W,F814W	858	0.039	1.85	-4.02
N300	NGC300-6	F435W,F814W	760	0.039	3.41	-4.02
N300	NGC300-6	F555W,F814W	753	0.039	1.81	-4.02

Catalog	Target Name	Filters	N	A	Mean	M
	E407-G18	F606W,F814W	715	0.045	¢8For	(7844

| DDO187 UGC9128 | F606W,F814W | 459 | 0.071 | 1.03 | -4.03 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

KKH98 KKH98
$\begin{array}{lllll}\text { F475W,F814W } & 294 & 0.385 & 2.23 & -4.04\end{array}$

DDO125 UGC7577 F606W,F814W 1990 0.064 1.07

U8508 UGC8508
F475W,F814W 7380.047
$2.23-4.03$
$\begin{array}{lllllll}\text { KKH86 } & \text { KKH71 } & \text { F606W,F814W } & 108 & 0.083 & 1.01 & -3.98\end{array}$

DDO99 UGC6817 F606W,F814W 668 0.081 0.99
$\begin{array}{lllllll}\text { DDO190 } & \text { DDO190 } & \text { F606W,F814W } & 1267 & 0.038 & 1.06 & -4.05\end{array}$
$\begin{array}{lllllll}\text { DDO113 DDO113 F475W,F814W } & 706 & 0.063 & 2.16 & -4.05\end{array}$

N4214 NGC4214-DEEP F606W,F814W 563 0.068 1.13

| DDO181 UGC8651 | F606W,F814W | 637 | 0.019 | 1.03 | -4.03 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllll}\text { Catalog } & \text { Target Name } & \text { Filters } & N & A & \text { Mean } & M\end{array}$
Name

$\begin{gathered} \text { Catalog } \\ \text { Name } \\ \text { E321-014 } \end{gathered}$	Target Name PGC39032	Filters F606W,F814W	N 320	A 0.293	Mean Color 1.04	$\begin{gathered} M \\ \text { (F814 } \\ -4.00 \\ \hline \end{gathered}$
U4483	UGC4483	F555W,F814W	302	0.105	1.34	-3.94
N2403	NGC2403-DEEP	F606W,F814W	629	0.124	1.11	-4.00
N2403	NGC2403-HALO-1	F606W,F814W	2369	0.124	1.21	-4.02
N2403	NGC2403-HALO-6	F606W,F814W	805	0.124	1.20	-4.02
DDO6	DDO6	F475W,F814W	647	0.053	2.17	-4.05
KKH37	KKH37	F475W,F814W	748	0.231	2.27	-4.03
HoII	UGC-4305-2	F555W,F814W	2461	0.098	1.53	-4.04
KDG2	E540-030	F606W,F814W	179	0.072	1.04	-4.04
$\begin{aligned} & \text { MCG9- } \\ & 20-1 \end{aligned}$	CGCG-269-049	F606W,F814W	46	0.076	1.05	-4.01

Catalog	Target Name	Filters	N	A	Mean	M

| FM1 M81F6D1 F606W,F814W | 636 | 0.241 | 1.16 | -4.02 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| KK77 M81F12D1 F606W,F814W | 1061 | 0.442 | 1.16 | -4.02 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DDO53 UGC-04459
F555W,F814W $953 \quad 0.118 \quad 1.48$ -4.05
N2976 N2976-DEEP F475W,F814W 1334

| N2976 N2976-DEEP F606W,F814W | 1340 | 0.224 | 1.24 | -4.02 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$0.249 \quad 1.29$
-4.02

| M81 M81-FIELD-29 F435W,F814W 551 | 0.249 | 3.40 | -4.02 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Catalog Name	Target Name	Filters	N	A	Mean Color	$\begin{gathered} M \\ (\mathrm{~F} 814) \end{gathered}$
DDO78	DDO78	F475W,F814W	1494	0.066	2.38	-4.02
F8D1	GAL- 094447+672619_302	F555W,F814W	1355	0.328	1.68	-3.99
BK5N	GAL- 100441+681522_355	F555W,F814W	251	0.195	1.47	-4.01
N3077	NGC3077PHOENIX	F555W,F814W	333	0.208	1.94	-4.01
HoI	UGC-5139	F555W,F814W	2086	0.153	1.54	-4.03
A0952+69	A0952+69	F475W,F814W	176	0.259	2.20	-4.04
N253	NGC0253-HALO-11	F606W,F814W	1193	0.058	1.23	-4.02
N253	NGC0253-WIDE1	F475W,F814W	2188	0.058	2.63	-4.02
N253	NGC0253-WIDE1	F606W,F814W	3269	0.058	1.26	-4.02
HS117	HS117	F606W,F814W	556	0.359	1.08	-4.05

DG9talog
DDJ8゙get Name F475Fidteqf814W 4180
DDO82
DDO82
F606W,F814W $4594 \quad 0.1331 .16$
-4.02

BK3N BK3N
F475W,F814W 235
$0.246 \quad 2.50$
-4.02
$\begin{array}{lllllll}\text { I2574 } & \text { IC-2574-2 } & \text { F555W,F814W } & 2425 & 0.112 & 1.58 & -4.02\end{array}$

IC2574-SGS
F435W,F814W 5638
$0.112 \quad 3.11$
-4.02

I2574 IC2574-SGS \quad F555W,F814W 5100 0.112 1.61

SCL-DE1
F606W,F814W $124 \quad 0.046 \quad 1.02 \quad-4.02$

Notes. Color-dependent absolute mag nitudes for the TRGB are taken from Girardi et al. (2008) isochrones. Mean colors are for the stars used to measure the TRGB, which are not necessarily all RGB stars, and include only stars within $0 .{ }^{m} 2$ of the TRGB. A_{V} values are as reported by IRSA for coordinates in Table 1 , with the exception of M82. Extinction corrections from A_{V} to the observed filters are adopted from Girardi et al. (2008), as described in the text. $m_{\text {TRGB }}$ was measured in the least crowded region of each galaxy. Measured distances for A0952 +69 , BK3N, and Holmberg IX are dominated by outer M81 stars, rather than RGB stars associated with the named galaxies. Listed uncertainties are dominated by
photometric uncertainties and by stochasticity in the number of stars near the tip; systematic uncertainties (due to uncertainties in the assumed TRGB absolute magnitudes and extinction) are likely to be much larger, but are not included in the listed uncertainties. [a] The distance to MCG9-20-1 is ambiguous, as it was not clear if the observed tip was for the RGB or AGB; the true distance modulus may potentially be sig nificantly fainter.

Download table as:

The reported F814W TRGB magnitude $m_{\text {TRGB }}$ and the associated uncertainty were determined by running 500-750 Monte Carlo trials with bootstrap resampling of the stars. In each trial, additional Gaussian random errors are added to the stars, scaled to the magnitude of each star's photometric error. Each trial returned the magnitude corresponding to the peak of the edge-detection response filter with in a 1 mag interval around the likely TRGB. We generated a histogram of the returned magnitudes, and fit the peak at $m_{\text {TRGB }}$ in the histogram with a Gaussian. We take the mean and width of the Gaussian to be the magnitude of the TRGB and its uncertainty. Although the Monte Carlo process artificially increases the photometric error (during randomization of magnitudes) and potentially biases $m_{\text {TRGB }}$ by scattering stars preferentially above the tip, in practice the effect of the added noise is negligible, since the photometric uncertainties are extremely small at $m_{\text {TRGB }}$ in almost every case. Furthermore, we have verified visually that the method above converges on a consistent part of the luminosity function, and thus preserves the accuracy of the relative distances.

In some Monte Carlo trials, there are additional peaks in the edge-
detection response function that clearly do not correspond to the TRGB (see Figure 25). These spurious peaks are most prevalent when there are a smaller number of stars, or an old population of AGB stars with a well-defined peak luminosity. In these cases, we initialized the Gaussian fit with a mean chosen to be centered on the peak corresponding most closely to the true TRGB. Examples of the luminosity function, edge-detection response, histogram of Monte Carlo TRGB magnitudes, and the CMD of the analyzed stars are presented in Figures $\underline{24}$ and $\underline{25}$.

[^0]\mathcal{C} Reset image size

Figure 24. Results of TRGB fitting for NGC 2403, showing the F814W luminosity function (upper left), edge-detection response (lower left), distribution TRGB magnitudes from of Monte Carlo trials (upper right), and the CMD of stars used in the TRGB determination (lower right). The adopted TRGB magnitude is shown as the vertical line in the first three panels, and as the two horizontal tic marks in the lower right panel.

Download figure:

Standard image
High-res olution image

Export PowerPoint slide

Figure 25. Results of TRGB fitting for KDG63. Panels are the same as in Figure 24. The histogram of Monte Carlo values is more complicated than in Figure 24, due to the smaller number of stars.

Download figure:

Uncertainties in the measured value of $m_{\text {TRGB }}$ can include random errors (due to small numbers of stars and to photometric errors) and systematic errors (due to contamination from stars on the red helium burning sequence, to uncertainties in the MW foreground extinction, and to the unknown internal extinction). We attempted to reduce our systematic errors by considering only stars likely to be RGB or AGB stars. To do so, we selected stars that fell with in model RGB isochrones from Girardi et al. (2008) in the appropriate HST filter set, extrapolated up into the region populated by AGB stars. This process was automated by first shifting the stars in magnitude and color based on the estimated foreground extinction from Schlegel et al. (1998), ${ }^{23}$ assuming $R_{V}=3.1, A_{\mathrm{F} 435 \mathrm{~W}} / A_{V}=1.30, A_{\mathrm{F} 475 \mathrm{~W}} / A_{V}=1.15, A_{\mathrm{F} 555 \mathrm{~W}} / A_{V}=$ $1.00, A_{\mathrm{F} 606 \mathrm{~W}} / A_{V}=0.87$, and $A_{\mathrm{F} 814 \mathrm{~W}} / A_{V}=0.57$, based upon Girardi et al. (2008) for typical temperatures of RGB stars. We used triangular interpolation of the isochrones to generate a regular grid of metallicities as a function of color and magnitude for a uniform, intermediate age population ($4 \boxtimes \mathrm{G} y \mathrm{r}$). We then interpolated the observed stars onto this grid to assign metallicities to each star, and rejected stars with unphysical metallicities. This process is equivalent to assigning each star to a particular RGB isochrone, and rejecting stars that are inconsistent with all plausible isochrones. For the remaining stars, we used a robust bi-weight to find the peak and width of the distribution of the logarithms of the inferred metallicities. We selected all stars whose metallicities fell within $1.5 \boxtimes$ of the peak in $\log ([\mathrm{Fe} / \mathrm{H}])$. We further excluded stars with metallicities outside of the range 0.0002 and 0.006 (for $4 \boxtimes G y r$ isochrones); with in this metallicity range, the F814W magnitude of the TRGB varies by less than $\pm 0.05 \mathrm{mag}$, but outside it, the TRGB becomes steadily fainter by several tenths of a magnitude, blurring the TRGB discontinuity and introducing systematic errors when converting $m_{\text {TRGB }}$ to distance. We expect little dependence of the TRGB absolute magnitude $M_{\text {TRGB }}$ on age or metallicity; the predicted absolute magnitude of the TRGB
depends primarily on the color of the RGB, and more weakly upon the particular age+metallicity combination that generated a particular RGB isochrone. The final isochrone fitting procedure cleanly isolated the bulk of RGB and AGB stars, while significantly reducing contamination from non-RGB features (Figures $\underline{24}$ and 25). $\underline{24}$

We further reduced systematic biases due to internal extinction and photometric errors by restricting our analysis to stars in regions of low crowding within an individual field, when sufficient numbers of stars were available $(>30,000)$. We chose a density threshold such that at least 25% of the area and 50% of the stars were included in the analysis. This cut eliminated stars in the most crowded regions with the highest internal extinction, while still preserving large numbers of stars. For galaxies with multiple pointings, the TRGB was measured in whichever fields had the least crowding and lowest probability of high internal or differential reddening, while still having large numbers of stars. When multiple clean fields were available, we analyzed both, to compare our internal systematics and to constrain the variation in internal extinction. The resulting TRGB magnitudes were frequently several tenths of a magnitude brighter than those measured within the main body of a galaxy. Beyond field placement, however, we make no further attempt to correct for internal extinction, although extinctions of several tenths of a magnitude are certainly possible in the outer regions of massive galaxies (e.g., Holwerda et al. 2008).

To transfer the measured TRGB magnitudes into initial distance estimates, we used the measured mean color within $0.2 m$ of the TRGB to pick a Girardi et al. (2008) isochrone with similar colors, from which we then find the absolute magnitude $M_{\text {TRGB }}$ of the TRGB. However, due to the uncertain state of the ACS CTE correction, there are likely to be systematic uncertainties present in the data that limit the accuracy of the inferred distance to a few percent. The likely
systematic uncertainties in the adopted value of $M_{\text {TRGB }}$ are even larger, with different theoretical models and empirical calibrations differing by as much as 0.2 mag (e.g., see Figure 8 of Gallart et al. 2005). The reported distances are thus best used as relative distances, rather than absolute ones. The uncertainties listed in Table $\underline{5}$ do not include these systematic errors, and include only the Poisson uncertainties captured by bootstrap resampling. Thus, while the Gaussian fitting procedure described above (and seen in the upper left panels of Figures $\underline{24}$ and 25) frequently reports formal distance errors of a few percent, the true uncertainties are undoubtedly larger.

The resulting data in Table $\underline{5}$ includes: the number of stars within 1 mag of the TRGB ($N_{\text {stars }}$); the adopted foreground extinction A_{V}; the mean color (within 0.2 mag of the TRGB) of the stars used to measure the TRGB, for the particular filter combination used; the predicted absolute magnitude of the TRGB at that color, based on isoch rones from Girardi et al. (2008); the apparent magnitude of the TRGB in F814W, uncorrected for extinction ($m_{\text {TRGB }}$ (raw)) ; the extinction corrected TRGB magnitude ($m_{\text {TRGB }}$) and its uncertainty; the resulting extinction corrected distance modulus ($m-M)_{0}$; and the inferred distance D in Mpc. The resulting spatial configuration of galaxies is shown in Figure 2.

Figure 26 plots the differences between the new distance moduli and those inferred from distances in Table 1, which had been used for initial sample selection, as a function of increasing distance (left) and luminosity (right). The revised distances agree well with previously published values. The median change in distance modulus is only -0.02 mag for the entire sample, indicating that there is little systematic deviation between our adopted TRGB scale and those used in the literature. There is however, a modest tendency for past distances to be systematically overestimated for the most massive
galaxies. If we split the sample into galaxies that are brighter or fainter than $M_{B}=-17$, the median offset is only -0.012 for the faint galaxies, but increases to -0.074 for the more luminous galaxies. We believe that that offset is most likely due to past TRGB determinations using stars closer to the galaxies' centers, where the extinction of dust is larger, leading the TRGB magnitude to appear fainter. In contrast, our measurements use the outskirts of galaxies, where the internal extinction is small, producing a brighter TRGB. On the other hand, many of the published distance estimates have made corrections for internal extinction, unlike those we present in Table 5 .

© Zoom In Q Zoom Out
$\mathcal{\sim}$ Resetimage size
Figure 26. Differences between the new TRGB distance moduli and those used in Table $\underline{1}$ at the time of survey selection, as a function of either each target's position in Table $\underline{5}$, which was sorted by the initial distance estimate (left) or absolute magnitude (right). Solid circles are used for ACS data and asterisks for WFPC2 data. Error bars indicate the Monte Carlo uncertainties reported in Table 5 , but do not include systematic uncertainties due to dust
extinction or the adopted IKGB absolute magnitudes. Ihe median change in distance modulus is only -0.02 mag , and the dispersion about the mean is 0.05 mag . Multiple observations of the same galaxy are connected with a solid line (for NGC 3109, NGC 55, NGC 300, NGC 4163, UA292, NGC 2403, M82, NGC 2976, M81, NGC 247, NGC 253, DDO82, and IC 2574), and show differences of typically less than 0.1 mag (i.e. 10% in distance). This variation is likely to be dominated by differences in internal extinction at different locations within the galaxy, with the outermost distance measurement being least likely to be affected by dust but more likely to be affected by Poisson uncertainties due to reduced numbers of stars.

Download figure:

Standard image
High-res olution image

EO Export PowerPoint slide

Because the most luminous galaxies tend to be found in the M81 group, the left panel shows a hint of correlation between distance and the offset in the distance modulus. However, the Spearman rank correlation coefficient is much smaller when using distance instead of luminosity (-0.09 versus 0.30), indicating that the variation in luminosity is the principal driver of the trend.

The dispersion about the mean difference is 0.05 mag , comparable to the precision of distances in Table 1 and to their published uncertainties. There is no difference in the dispersion for brighter and fainter galaxies. Multiple observations of the same galaxy (connected with a solid line in Figure 26) show differences of typically less than 0.1 mag (i.e. 10% in distance). Because these measurements were made in different regions of these galaxies, some of this variation is likely to
be due to differences in internal extinction within the galaxy. In such cases, the outermost distance measurement is likely to be the least affected by dust, although the reduced numbers of stars in such fields leads to larger Poisson uncertainties. We also found no systematic offsets between distances determined with ACS and those measured with WFPC2 data.

We see no evidence that the revised distances would have changed our initial sample selection. The largest change in distance is for UGCA 292, which is nearly 40% further away than previously estimated from its brightest stars (Makarova et al. 1998). The distance to MCG9-20-131 also appeared to decrease significantly; however, there is some ambiguity as to whether or not the apparent TRGB is due to RGB or AGB stars, or potentially even red supergiants. Thus, the distance may have a systematic offset, even though the formal error on the magnitude of the tip is relatively small. With the new distances, NGC 247 and NGC 253 are much closer to each other. The morphology of the other groups remain essentially unchanged.

13. CONCLUSIONS

The ACS Nearby Galaxy Survey Treasury is the now the largest repository of uniform stellar photometry for nearby galaxies. The resulting catalogs contain millions of measurements that can be used for studies of ancient and recent SFHs (Williams et al. 2009; Weisz et al. 2008) and comparisons with multi-wavelength data (Gogarten et al. 2009; Ott et al. 2008). The raw images are a resource for searches for stellar clusters, H ii region nebulosity, and background light sources.

We are happy to acknowledge the consistently professional and helpful assistance from the staff at STSCI, including Alison Vick, Marco Sirianni, Howard Bond, and Neill Reid. We also are pleased to
thank Jay Anderson, Brent Tully, Abi Saha, Stan Vlcek, Pat Taylor, Sarah Garner, and Richard Coffey for assistance at various times during the project. We also thank the referee for constructive comments. J.J.D. acknowledges partial support from the Wyckoff Faculty Fellowship during this work, and the hospitality of the MPIA and Carnegie Observatories during some of the writing of this paper. L.G. acknowledges financial support from contract ASI-INAF I/0 16/07/0. I.K. and V.K. were partially supported by RFFI grant 07-0200005 and grant DFG-RFBR 06-02-04017.

This work is based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. Support for this work was provided by NASA through grant number GO-10915 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This research has made use of the NASA/IPAC Infrared Science Archive and the NASA/IPAC Extragalactic Database (NED), which are both operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made extensive use of NASA's Astrophysics Data System Bibliographic Services.

Facilities: HST(ACS), HST(WFPC2)

Footnotes

19 These updated distances agree with the distances in Table 1 to 10% in almost all cases, as discussed in Section 12.
http://purcell.as.arizona.edu/dolphot.

21 Preliminary versions of revised ACS charge transfer efficiency (CTE) corrections have recently been released on STScl's Web site, but were announced after all the data had been processed for this release. These
corrections will be used in subsequent releases，and updated on the data release Web site．

22 Note that the Bedin et al．（2005）ACS calibration also assumes that $m_{\text {F814W，WFPC2 }}=0.0$（giving $m_{z p, F 814 \mathrm{~W}, \mathrm{ACS}}=25.492$ ），so comparisons with this alternate calibration also require adding an +0.035 offset；this correction was not made during the WFPC2－ACS comparison in Saviane et al．（2008），and thus their apparent agreement of $m_{\text {F814W，WFPC2 }}$－ $m_{\text {F814W，ACS }}=0.003 \pm 0.005$ actually implies that $m_{\text {F814 }}, \mathrm{WFPC} 2-$ $m_{\text {F814W，ACS }}=0.038 \pm 0.005$ over the magnitude and color range of $26<$ $m_{\text {F814W，ACS }}<27.5$ and $0<m_{\text {F606W，ACS }}-m_{\text {F814W，ACS }}<2$ ．

23 The one exception is M82，for which the Schlegel et al．（1998）value is clearly contaminated by point source emission from M82 itself，leading to an erroneously high foreground extinction（ $A_{B}=0.685$ ）．Instead，we took A_{B} $=0.25$ ，based upon regions immediately adjacent to M82．

24 Note that although we derived the＂metallicity＂of each star，we do not treat these as actual measurements of the metallicity due to the likely presence of mixed stellar ages on the RGB；instead，we only use the inferred metallicity as a label for the RGB isochrone on which a star lies．Likewise， the mean color that we report for the TRGB stars includes only those stars that made the various metallicity cuts，and does not reflect the color of the RGB as a whole．

References

个 Aparicio，A．\＆Tikhonov，N．2000，AJ，119， 2183
IOPscience ADS

个 Bedin，L．R．，Cassisi，S．，Castelli，F．，Piotto，G．，Anderson，J．，Salaris，M．， Momany，Y．，\＆Pietrinferni，A．2005，MNRAS，357， 1038 Crossref ADS

个 Begum，A．\＆Chengalur，J．N．2005，MNRAS，362， 609 Crossref ADS

个 Bertin，E．\＆Arnouts，S．1996，A\＆AS，117， 393 Crossref ADS

个 Butler，D．J．，Martínez－Delgado，D．，\＆Brandner，W．2004，AJ，127， 1472 IOPscience ADS

个 Caldwell，N．，Armandroff，T．E．，Da Costa，G．S．，\＆Seitzer，P．1998，AJ，115， 535

IOPscience ADS

个 Chiboucas，K．，Karachentsev，I．D．，\＆Tully，R．B．2009，AJ，137， 3009 IOPscience ADS

个 del Río，M．S．，Brinks，E．，\＆Cepa，J．2004，AJ，128， 89 IOPscience ADS

个 Dohm－Palmer，R．C．，Skillman，E．D．，Mateo，M．，Saha，A．，Dolphin，A．，Tolstoy， E．，Gallagher，J．S．，\＆Cole，A．A．2002，AJ，123， 813 IOPscience ADS
＾Dohm－Palmer，R．C．et al．1997，$A J$ ，114， 2514 Crossref ADS

个 Dolphin，A．E．2000，PASP，112， 1383 IOPscience ADS

个 Dolphin，A．E．2002，MNRAS，332， 91 Crossref ADS
＾Dolphin，A．E．et al．2001，MNRAS，324， 249 Crossref ADS

个 Dolphin，A．E．et al．2002，$A J, \mathbf{1 2 3}, 3154$
IOPscience ADS

个 Drozdovsky，I．O．，Schulte－Ladbeck，R．E．，Hopp，U．，Greggio，L．，\＆Crone，M．M． 2002，AJ，124， 811
IOPscience ADS

个 Frayn，C．M．\＆Gilmore，G．F．2003，MNRAS，339， 887
Crossref ADS

个 Freedman，W．L．et al．1994，ApJ，427， 628
Crossref ADS

个 Gallart，C．，Zoccali，M．，\＆Aparicio，A．2005，ARA\＆A，43， 387
Crossref ADS

个 Gieren，W．，Pietrzy ski，G．，Soszy ski，I．，Bresolin，F．，Kudritzki，R．－P．，Minniti，D．，\＆ Storm，J．2005，ApJ，628， 695
IOPscience ADS

个 Gieren，W．et al．2004，$A J, \mathbf{1 2 8}, 1167$
IOPscience ADS

个 Girardi，L．et al．2008，PASP，120，583
IOPscience ADS
＾Gogarten，S．M．et al．2009，ApJ，691， 115
IOPscience ADS

个 Holtzman，J．A．，Afonso，C．，\＆Dolphin，A．2006，ApJS，166，534 IOPscience ADS

个 Holtzman，J．A．，Burrows，C．J．，Casertano，S．，Hester，J．J．，Trauger，J．T．， Watson，A．M．，\＆Worthey，G．1995，PASP，107， 1065 IOPscience ADS

个 Holwerda，B．W．，Keel，W．C．，Williams，B．，Dalcanton，J．J．，\＆de Jong，R．S． 2009，AJ，137， 3000
IOPscience ADS

个 Izotov，Y．I．\＆Thuan，T．X．2002，ApJ，567，875
IOPscience ADS

个 Jarrett，T．H．，Chester，T．，Cutri，R．，Schneider，S．E．，\＆Huchra，J．P．2003，AJ， 125， 525
IOPscience ADS

个 Jee，M．J．，Blakeslee，J．P．，Sirianni，M．，Martel，A．R．，White，R．L．，\＆Ford，H．C． 2007，PASP，119， 1403

IOPscience ADS
＾Karachentsev，I．D．2005，AJ，129， 178
IOPscience ADS

个 Karachentsev，I．D．，Karachentseva，V．E．，Huchtmeier，W．K．，\＆Makarov，D．I． 2004，AJ，127， 2031
IOPscience ADS
＾Karachentsev，I．D．et al．2001，$A \& A, \mathbf{3 7 9 , 4 0 7}$ Crossref ADS

个 Karachentsev，I．D．et al．2002a，$A \& A, \mathbf{3 8 3}, 125$
Crossref ADS
＾Karachentsev，I．D．et al．2002b，$A \& A, \mathbf{3 8 5}, 21$ Crossref ADS

个 Karachentsev，I．D．et al．2002c，$A \& A, 389,812$
Crossref ADS

个 Karachentsev，I．D．et al．2003，$A \& A, 404,93$
Crossref ADS
＾Karachentsev，I．D．et al．2006，$A J, \mathbf{1 3 1}, 1361$
IOPscience ADS

个 Kennicutt，R．et al．2007，American Astronomical Society Meeting Abstracts，
211， 95.02
ADS

个 Koekemoer，A．M．，Fruchter，A．S．，Hook，R．N．，\＆Hack，W．2002，The 2002 HST Calibration Workshop：Hubble after the Installation of the ACS and the NICMOS Cooling System，ed．S．Arribas，A．Koekemoer，\＆B．Whitmore （Baltimore，MD：Space Telescope Science Institute）， 337 ADS

个 Krist，J．1995，ASP Conf．Ser．77，Astronomical Data Analysis Software and Systems IV，ed．R．A．Shaw，H．E．Payne，\＆J．J．E．Hayes（San Francisco，CA： ASP）， 349

ADS

个 Maíz－Apellániz，J．，Cieza，L．，\＆MacKenty，J．W．2002，AJ，123， 1307 IOPscience ADS

个 Makarov，D．，Makarova，L．，Rizzi，L．，Tully，R．B．，Dolphin，A．E．，Sakai，S．，\＆ Shaya，E．J．2006，AJ，132， 2729
IOPscience ADS
＾Makarova，L．，Karachentsev，I．，Takalo，L．O．，Heinaemaeki，P．，\＆Valtonen，M． 1998，A\＆AS，128， 459
Crossref ADS

个 Mannucci，F．，Basile，F．，Poggianti，B．M．，Cimatti，A．，Daddi，E．，Pozzetti，L．，\＆ Vanzi，L．2001，MNRAS，326， 745 Crossref ADS

个 Méndez，B．，Davis，M．，Moustakas，J．，Newman，J．，Madore，B．F．，\＆Freedman， W．L．2002，AJ， $\mathbf{1 2 4}$ ， 213
IOPscience ADS

个 Minniti，D．，Zijlstra，A．A．，\＆Alonso，M．V．1999，AJ，117，881
IOPscience

个 Mouhcine，M．，Ferguson，H．C．，Rich，R．M．，Brown，T．M．，\＆Smith，T．E．2005， ApJ，633， 810

IOPscience ADS

个 Mutchler，M．et al．2007，$P A S P$ ，119， 1
IOPscience ADS

个 Olsen，K．A．G．，Blum，R．D．，\＆Rigaut，F．2003，AJ，126， 452
IOPscience ADS

个 Ott，J．，Skillman，E．，Dalcanton，J．，Walter，F．，Stilp，A．，Koribalski，B．，West，A．，\＆ Warren，S．2008，arXiv：0805．4605

ADS Preprint

个 Rekola，R．，Richer，M．G．，McCall，M．L．，Valtonen，M．J．，Kotilainen，J．K．，\＆Flynn， C．2005，MNRAS，361， 330 Crossref ADS

个 Rhodes，J．D．，Massey，R．，Albert，J．，Taylor，J．E．，Koekemoer，A．M．，\＆ Leauthaud，A．2006，The 2005 HST Calibration Workshop：Hubble After the Transition to Two－Gyro Mode，ed．A．M．Koekemoer，P．Goudfrooij，\＆L．L． Dressel， 21 ADS

个 Rizzi，L．，Bresolin，F．，Kudritzki，R．－P．，Gieren，W．，\＆Pietrzy ski，G．2006，ApJ， 638，766

IOPscience ADS

个 Sakai，S．，Madore，B．F．，\＆Freedman，W．L．1996，ApJ，461， 713 Crossref ADS
＾Sakai，S．\＆Madore，B．F．1999，ApJ，526， 599
IOPscience ADS

个 Sakai，S．\＆Madore，B．F．2001，ApJ，555， 280

个 Saviane，I．，Momany，Y．，da Costa，G．S．，Rich，R．M．，\＆Hibbard，J．E．2008，ApJ， 678，179
IOPscience ADS
＾Schlegel，D．J．，Finkbeiner，D．P．，\＆Davis，M．1998，ApJ，500， 525 IOPscience ADS
＾Seth，A．C．，Dalcanton，J．J．，\＆de Jong，R．S．2005a，AJ，129， 1331 IOPscience ADS

个 Seth，A．C．，Dalcanton，J．J．，\＆de Jong，R．S．2005b，AJ，130， 1574 IOPscience ADS

个 Sirianni，M．et al．2005，PASP，117， 1049
IOPscience ADS

个 Tikhonov，N．A．，Galazutdinova，O．A．，\＆Aparicio，A．2003，A\＆A，401， 863 Crossref ADS

个 Tully，R．B．et al．2006，$A J, \mathbf{1 3 2}, 729$
IOPscience ADS

个 Vaduvescu，O．，McCall，M．L．，Richer，M．G．，\＆Fingerhut，R．L．2005，AJ，130， 1593
IOPscience ADS
\uparrow van den Bergh，S．2000，PASP，112， 529
IOPscience ADS

个 Weisz，D．R．，Skillman，E．D．，Cannon，J．M．，Dolphin，A．E．，Kennicutt，R．C．，Jr．， Lee，J．，\＆Walter，F．2008，ApJ，689， 160
IOPscience ADS
＾Williams，B．F．etal．2009，$A, \mathbf{1 3 7}, 419$

个 Windhorst, R. A., Cohen, S. H., Hathi, N. P., Jansen, R. A., \& Ryan, R. E. 2008, AIP Conf. Proc. 1035, The Evolution of Galaxies Through the Neutral Hydrogen Window (New York: AIP), 318 ADS

Export references:
BibTeX RIS

Citations

1. The disc-averaged star formation relation for Local Volume dwarf galaxies Á et al2018 Monthly Notices of the Royal Astronomical Society 480210 Crossref
2. Scientific discovery with the James Webb Space Telescope Jason Kalirai 2018 Contemporary Physics 1
Crossref
3. Star formation complexes in the 'galaxy-sized' supergiant shell of the galaxy Holmbergl
Oleg V Egorov et al2018 Monthly Notices of the Royal Astronomical Society 4783386

Crossref

4. Star formation in the outskirts of DDO 154: a top-light IMF in a nearly dormant disc
Adam B Watts et al2018 Monthly Notices of the Royal Astronomical Society 4775554
Crossref
5. Exploring the dust content of galactic winds with Herschel - II. Nearby dwarf galaxies
Alexander McCormick et al2018 Monthly Notices of the Royal Astronomical Society477699

Crossref

6. Spatially offset AGN candidates in the CLASS survey

Chris J Skipper and Ian W A Browne 2018 Monthly Notices of the Royal Astronomical Society 4755179
Crossref
7. A plane of high-velocity galaxies across the Local Group Indranil Banik and Hongsheng Zhao 2018 Monthly Notices of the Royal Astronomical Society 4734033

Crossref
8. Direct Evidence for Maser Emission from the 36.2 GHz Class ITransition of Methanol in NGC253
Xi Chen et al. 2018 The Astrophysical Journal Letters 856 L35 IOPscience
9. The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
Bela Abolfathi et al. 2018 The Astrophysical Journal Supplement
Series 23542
IOPscience
10. The Resolved Stellar Populations in the LEGUS Galaxies1
E. Sabbi et al. 2018 The Astrophysical Journal Supplement Series 23523 IOPscience
11. Stellar Populations in the Outer Disk and Halo of the Spiral Galaxy M101
J. Christopher Mihos et al. 2018 The Astrophysical Journa/862 99 IOPscience
12. Near-infrared Spectral Evolution of the Type la Supernova 2014J in the Nebular Phase: Implications for the Progenitor System T. R. Diamond etal. 2018 The Astrophysical Journa/861 119 IOPscience
13. The MALATANG Survey: The $L_{\text {GAS }}-L_{\mathbb{I}}$ Correlation on Sub-kiloparsec Scale in

Six Nearby Star-forming Galaxies as Traced by HCN $J=4 \quad 3$ and HCO+ $J=43$
Qing-Hua Tan et al. 2018 The Astrophysical Journa/860 165 IOPscience
14. Constraints for the Progenitor Masses of Historic Core-collapse Supernovae Benjamin F. Williams et al. 2018 The Astrophysical Journa/860 39

IOPscience

15. Seeing Red in NGC 1978, NGC 55, and NGC 3109
T. J. Davidge 2018 The Astrophysical Journa/856 129

IOPscience
16. A Study of Two Dwarf Irregular Galaxies with Asymmetrical Star Formation Distributions

Deidre A. Hunter et al. 2018 The Astrophysical Journa/855 7 IOPscience
17. Mapping Circumstellar Matter with Polarized Light: The Case of Supernova 2014J in M82

Yi Yang et al. 2018 The Astrophysical Journa/854 55 IOPscience
18. Late-time Flattening of Type la Supernova Light Curves: Constraints from SN 2014J in M82

Yi Yang et al. 2018 The Astrophysical Journa/852 89

IOPscience

19. The Carnegie-Chicago Hubble Program. III. The Distance to NGC 1365 via the Tip of the Red Giant Branch In Sung Jang et al. 2018 The Astrophysical Journa/852 60 IOPscience
20. Schuyler D. Van Dyk 2017693

Crossref
21. The direct identification of core-collapse supernova progenitors

Schuyler D. Van Dyk 2017 Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 37520160277
22. Class I methanol masers in NGC 253: Alcohol at the end of the bar S. P. Ellingsen et a/2017 Monthly Notices of the Royal Astronomical Society 472604
Crossref
23. The role of environment on the star formation history of disc galaxies Xiaoyu Kang et a/2017 Monthly Notices of the Royal Astronomical Society 4691636

Crossref

24. The frequency and stellar-mass dependence of boxy/peanut-shaped bulges in barred galaxies
Peter Erwin and Victor P. Debattista 2017 Monthly Notices of the Royal Astronomical Society 4682058
Crossref
25. Supernova progenitors, their variability and the Type IIP Supernova ASASSN16fq in M66
C. S. Kochanek et al 2017 Monthly Notices of the Royal Astronomical Society 4673347

Crossref
26. 22 Ne and 23 Na ejecta from intermediate-mass stars: the impact of the new LUNA rate for $22 \mathrm{Ne}(\mathrm{p}$,) 23 Na
A. Slemer et a/ 2017 Monthly Notices of the Royal Astronomical Society 4654817
Crossref
27. Detection of $\mathrm{HC}_{3} \mathrm{~N}$ Maser Emission in NGC 253

Simon P. Ellingsen et al. 2017 The Astrophysical Journal Letters 841 L14 IOPscience
28. The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

Franco D. Albareti et al. 2017 The Astrophysical Journal Supplement

Series 23325
IOPscience
29. A Rogues' Gallery of Andromeda's Dwarf Galaxies. I. A Predominance of Red Horizontal Branches

Nicolas F. Martin et al. 2017 The Astrophysical Journa/850 16 IOPscience
30. Molecular-cloud-scale Chemical Composition. I. A Mapping Spectral Line Survey toward W51 in the 3 mm Band
Yoshimasa Watanabe et al. 2017 The Astrophysical Journa/845 116 IOPscience
31. Planetary Nebulae and H ii Regions in the Starburst Irregular Galaxy NGC 4449 from LBT MODS Data
F. Annibali et al. 2017 The Astrophysical Journa/843 20 IOPscience
32. A New Approach to Convective Core Overshooting: Probabilistic Constraints from Color-Magnitude Diagrams of LMC Clusters
Philip Rosenfield et al. 2017 The Astrophysical Journa/841 69 IOPscience
33. The Dragonfly Nearby Galaxies Survey. III. The Luminosity Function of the M101 Group
Shany Danieli et al. 2017 The Astrophysical Journa/837 136 IOPscience
34. The Candidate Progenitor of the Type IIn SN 2010jl is Not an Optically Luminous Star
Ori D. Fox et al. 2017 The Astrophysical Journa/836 222 IOPscience
35. CO Spectral Line Energy Distributions in Galactic Sources: Empirical Interpretation of Extragalactic Observations
Nick Indriolo et al. 2017 The Astrophysical Journa/836 117
IOPscience
36. The Tip of the Red Giant Branch Distances to Type la Supernova Host

Galaxies. IV. Color Dependence and Zero-point Calibration
In Sung Jang and Myung Gyoon Lee 2017 The Astrophysical Journa/835 28 IOPscience
37. The Effect of Variability on X-Ray Binary Luminosity Functions: Multiple-epoch Observations of NGC 300 with Chandra
B. Binder et al. 2017 The Astrophysical Journa/834 128 IOPscience
38. The Panchromatic Hubble Andromeda Treasury. XVII. Examining Obscured Star Formation with Synthetic Ultraviolet Flux Maps in M31.
Alexia R. Lewis et al. 2017 The Astrophysical Journa/834 70 IOPscience
39. Interstellar-medium Mapping in M82 through Light Echoes around Supernova 2014J
Yi Yang et al. 2017 The Astrophysical Journa/834 60 IOPscience
40. Red Clump Stars

Léo Girardi 2016 Annual Review of Astronomy and Astrophysics 5495 Crossref
41. Constraining the escape fraction of ionizing photons from H ii regions within NGC 300: A concept paper
F. Niederhofer et al2016 Astronomy \& Astrophysics 592 A47 Crossref
42. Dark influences
T. K. Starkenburg et al2016 Astronomy \& Astrophysics 587 A24

Crossref

43. SN 2014J at M82 - I. A middle-class Type la supernova by all spectroscopic metrics
L. Galbany et al2016 Monthly Notices of the Royal Astronomical

Society 457525
Crossref
44. The star formation history of low-mass disk galaxies: A case study of NGC

Xiaoyu Kang et al2016 Astronomy \& Astrophysics 585 A20

Crossref

45. Disappearance of the Progenitor of Supernova iPTF13bvn Gastón Folatelli et al. 2016 The Astrophysical Journal Letters 825 L22 IOPscience
46. Post-maximum Near-infrared Spectra of SN 2014J: A Search for Interaction Signatures
D. J. Sand et al. 2016 The Astrophysical Journal Letters 822 L16 IOPscience
47. Rotational Dynamics and Star Formation in the Nearby Dwarf Galaxy NGC 5238
John M. Cannon etal. 2016 The Astronomical Journa/152 202 IOPscience
48. Isolating the Young Stellar Population in the Outer Disk of NGC 300 Tristan J. Hillis et al. 2016 The Astrophysical Journa/831 191 IOPscience
49. Rising from the Ashes: Mid-infrared Re-brightening of the Impostor SN 2010da in NGC 300
Ryan M. Lau et al. 2016 The Astrophysical Journa/830 142 IOPscience
50. A Spectroscopic Study of Blue Supergiant Stars in the Sculptor Galaxy NGC 55: Chemical Evolution and Distance R. P. Kudritzki etal. 2016 The Astrophysical Journa/829 70 IOPscience
51. Asymmetries in SN 2014J near Maximum Light Revealed through Spectropolarimetry
Amber L. Porter et al. 2016 The Astrophysical Journa/828 24 IOPscience
52. The Panchromatic Hubble Andromeda Treasury. XV. The BEAST: Bayesian Extinction and Stellar Tool

Karl D. Gordon et al. 2016 The Astrophysical Journa/826 104 IOPscience
53. The Distance to M51

Kristen. B. W. McQuinn et al. 2016 The Astrophysical Journa/826 21 IOPscience
54. Measurements of the Soft Gamma-Ray Emission from SN2014J with Suzaku Y. Terada et al. 2016 The Astrophysical Journa/823 43 IOPscience
55. The Extended Halo of Centaurus A: Uncovering Satellites, Streams, and Substructures
D. Crnojevi etal. 2016 The Astrophysical Journa/823 19

IOPscience
56. Evolution of Thermally Pulsing Asymptotic Giant Branch Stars. V. Constraining the Mass Loss and Lifetimes of Intermediate-mass, Low-metallicity AGB Stars Philip Rosenfield etal. 2016 The Astrophysical Journa/822 73 IOPscience
57. A Deep Search for Prompt Radio Emission from Thermonuclear Supernovae with the Very Large Array
Laura Chomiuk et al. 2016 The Astrophysical Journa/821 119 IOPscience
58. The imprint of reionization on the star formation histories of dwarf galaxies
A. Benítez-Llambay et al 2015 Monthly Notices of the Royal Astronomical Society 4504207

Crossref
59. Faint dwarfs as a test of DM models: WDM versus CDM
F. Governato et al2015 Monthly Notices of the Royal Astronomical

Society448792

Crossref

60. Hi observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7
D. M. Lucero et a/2015 Monthly Notices of the Royal Astronomical

Society 4503935
Crossref
61. ALMA observations of 99 GHz free-free and H 40 line emission from star formation in the centre of NGC 253
G. J. Bendo et al2015 Monthly Notices of the Royal Astronomical Society: Letters 450 L80
Crossref
62. Optical-near-IR analysis of globular clusters in the IKN dwarf spheroidal: a complex star formation history
A. Tudorica et al2015 Astronomy \& Astrophysics 581 A84 Crossref
63. Diversity in extinction laws of Type la supernovae measured between 0.2 and $2 \mu \mathrm{~m}$
R. Amanullah et al 2015 Monthly Notices of the Royal Astronomical

Society 4533300
Crossref
64. Modeling the physical properties in the ISM of the low-metallicity galaxy NGC 4214
A. Dimaratos etal2015 Astronomy \& Astrophysics 580 A135 Crossref
65. The initial mass function and star formation law in the outer disc of NGC 2915 S. M. Bruzzese etal2015 Monthly Notices of the Royal Astronomical Society 447618

Crossref

66. Antlia B: A Faint Dwarf Galaxy Member of the NGC 3109 Association D. J. Sand et al. 2015 The Astrophysical Journal Letters 812 L13 IOPscience
67. Physical Dust Models for the Extinction toward Supernova 2014J in M82 Jian Gao et al. 2015 The Astrophysical Journal Letters 807 L26 IOPscience
68. The Chandra Local Volume Survey. I. The X-Ray Point Source Populations of NGC 55, NGC 2403, and NGC 4214
B. Binder et al. 2015 The Astronomical Journa/150 94 IOPscience
69. Stellar Populations and the Star Formation Histories of LSB Galaxies. V. WFC3 Color-Magnitude Diagrams
James Schombert and Stacy McGaugh 2015 The Astronomical
Journa/150 72
IOPscience
70. High-resolution Observations of Molecular Gas in the Early-type Dwarf Galaxy NGC 404
Christopher L. Taylor etal. 2015 The Astronomical Journa/149 187 IOPscience
71. Legacy Extragalactic UV Survey (LEGUS) With the Hubble Space Telescope. I.

Survey Description
D. Calzetti etal. 2015 The Astronomical Journa/14951

IOPscience
72. CARMA CO Observations of Three Extremely Metal-poor, Star-forming Galaxies
Steven R. Warren et al. 2015 The Astrophysical Journa/814 30 IOPscience
73. A New Sample of Obscured AGNs Selected from the XMM-Newton and AKARI Surveys
Yuichi Terashima et al. 2015 The Astrophysical Journa/814 11 IOPscience
74. Leo P: An Unquenched Very Low-mass Galaxy

Kristen B. W. McQuinn et al. 2015 The Astrophysical Journa/812 158 IOPscience
75. When do stars in 47 Tucanae lose their mass?

Jeremy Heyl et al. 2015 The Astrophysical Journa/810 127
IOPscience
76. Testing Density Wave Theory with Resolved Stellar Populations around Spiral Arms in M81
Yumi Choi et al. 2015 The Astrophysical Journa/810 9 IOPscience
77. The Energetics of Cusp Destruction

Aaron J. Maxwell et al. 2015 The Astrophysical Journa/806 229 IOPscience
78. Circumstellar Dust around AGB Stars and Implications for Infrared Emission from Galaxies

Alexa Villaume et al. 2015 The Astrophysical Journa/806 82 IOPscience
79. Red Supergiants as Cosmic Abundance Probes: The Sculptor Galaxy NGC 300
J. Zachary Gazak et al. 2015 The Astrophysical Journa/805 182 IOPscience
80. TiNy Titans: The Role of Dwarf-Dwarf Interactions in Low-mass Galaxy Evolution
S. Stierwalt et al. 2015 The Astrophysical Journa/805 2 IOPscience
81. Observations of Type la Supernova 2014J with FLITECAM/SOFIA William D. Vacca et al. 2015 The Astrophysical Journa/804 66 IOPscience
82. Characterizing the Star Formation of the Low-mass Shield Galaxies from Hubble Space Telescope Imaging

Kristen. B. W. McQuinn et al. 2015 The Astrophysical Journa/802 66 IOPscience
83. Diffuse Atomic and Molecular Gas in the Interstellar Medium of M82 toward SN 2014J

Adam M. Ritchey et al. 2015 The Astrophysical Journal799 197 IOPscience
84. Finding Car Analogs in Nearby Galaxies Using Spitzer. Il. Identification of An

Emerging Class of Extragalactic Self-Obscured Stars
Rubab Khan et al. 2015 The Astrophysical Journa/799 187 IOPscience
85. The Influence of Red Spiral Galaxies on the Shape of the Local K-band Luminosity Function

Nicolas J. Bonne etal. 2015 The Astrophysical Journa/799 160 IOPscience
86. Constraints on the Origin of the First Light from SN 2014J
A. Goobar et al. 2015 The Astrophysical Journa/799 106 IOPscience
87. Observations of the M82 SN 2014J with the Kilodegree Extremely Little Telescope
Robert J. Siverd etal. 2015 The Astrophysical Journa/799 105 IOPscience
88. Early Observations and Analysis of the Type la SN 2014J in M82
G. H. Marion et al. 2015 The Astrophysical Journa/798 39

IOPscience

89. New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star-forming dwarf galaxies Jing Tang et al2014 Monthly Notices of the Royal Astronomical Society 4454287

Crossref

90. Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust Ryan J. Foley et al2014 Monthly Notices of the Royal Astronomical
Society443 2887
Crossref
91. Structure of the Canes Venatici I cloud of galaxies

Dmitry I. Makarov et al2014 Proceedings of the International Astronomical
Union 11209
Crossref
92. The triggering of starbursts in low-mass galaxies

Federico Lelli et al2014 Monthly Notices of the Royal Astronomical Society 4451694
Crossref
93. The SAMI Galaxy Survey: the discovery of a luminous, low-metallicity H ii complex in the dwarf galaxy GAMA J141103.98-003242.3
S. N. Richards et al2014 Monthly Notices of the Royal Astronomical Society 4451104
Crossref
94. Spitzer Local Volume Legacy (LVL) SEDs and physical properties
D. O. Cook et al2014 Monthly Notices of the Royal Astronomical

Society445899

Crossref
95. Empirical ugri-UBVRc transformations for galaxies
D. O. Cook et al2014 Monthly Notices of the Royal Astronomical

Society 445890

Crossref

96. The Spitzer Local Volume Legacy (LVL) global optical photometry D. O. Cook et al2014 Monthly Notices of the Royal Astronomical Society 445881

Crossref

97. Optical and infrared emission of H ii complexes as a clue to the PAH life cycle M. S. Khramtsova et a/2014 Monthly Notices of the Royal Astronomical Society 444757 Crossref
98. Upper limits on the luminosity of the progenitor of Type la supernova SN 2014J
M. T. B. Nielsen et al2014 Monthly Notices of the Royal Astronomical

Society 4423400
Crossref
99. Near-infrared counterparts of ultraluminous X-ray sources
M. Heida et al2014 Monthly Notices of the Royal Astronomical

Society 4421054
Crossref
100. Perseus I and the NGC 3109 association in the context of the Local Group dwarf galaxy structures
M. S. Pawlowski and S. S. McGaugh 2014 Monthly Notices of the Roya/ Astronomical Society
Crossref
101. A panchromatic analysis of starburst galaxy M82: probing the dust properties S. Hutton et al 2014 Monthly Notices of the Royal Astronomical Society

Crossref

102. On the relation between metallicity and RGB color in HST/ACS data D. Streich et al2014 Astronomy \& Astrophysics 563 A5 Crossref
103. A panoramic VISTA of the stellar halo of NGC 253
L. Greggio et al2014 Astronomy \& Astrophysics 562 A73 Crossref
104. Globular clusters and supermassive black holes in galaxies: further analysis and a larger sample
Gretchen L. H. Harris et a/ 2014 Monthly Notices of the Royal Astronomical
Society438 2117
Crossref
105. Resolved photometry of young massive clusters in the starburst galaxy NGC 4214
A. Sollima et al 2014 Monthly Notices of the Royal Astronomical

Society 4371918
Crossref
106. Discovery of a New Faint Dwarf Galaxy Associated with NGC 253
D. J. Sand et al. 2014 The Astrophysical Journal Letters 793 L7 IOPscience
107. Detection of 36 GHz Class I Methanol Maser Emission toward NGC 253

Simon P. Ellingsen et al. 2014 The Astrophysical Journal Letters 790 L28 IOPscience
108. Reversal of Fortune: Increased Star Formation Efficiencies in the Early Histories of Dwarf Galaxies?
Piero Madau et al. 2014 The Astrophysical Journal Letters 790 L17 IOPscience
109. The Peculiar Extinction Law of SN 2014J Measured with the Hubble Space Telescope
R. Amanullah et al. 2014 The Astrophysical Journal Letters 788 L21 IOPscience
110. The Rise of SN 2014J in the Nearby Galaxy M82
A. Goobar et al. 2014 The Astrophysical Journal Letters 784 L12 IOPscience
111. The Green Bank Telescope Maps the Dense, Star-forming Gas in the Nearby Starburst Galaxy M82
Amanda A. Kepley et al. 2014 The Astrophysical Journal Letters $\mathbf{7 8 0}$ L13 IOPscience
112. The Abundance Properties of Nearby Late-type Galaxies. I. The Data L. S. Pilyugin et al. 2014 The Astronomical Journa/147 131 IOPscience
113. Multi-epoch Very Long Baseline Interferometric Observations of the Nuclear Starburst Region of NGC 253: Improved Modeling of the Supernova and Star formation Rates
H. Rampadarath et al. 2014 The Astronomical Journa/1475 IOPscience
114. The Panchromatic Hubble Andromeda Treasury. X. Ultraviolet to Infrared Photometry of 117 Million Equidistant Stars

Benjamin F. Williams et al. 2014 The Astrophysical Journal Supplement
Series 2159
IOPscience
115. A Deep Chandra ACIS Survey of M83

Knox S. Long et al. 2014 The Astrophysical Journal Supplement
Series 21221
IOPscience
116. Extended HCN and HCO+ Emission in the Starburst Galaxy M82
P. Salas et al. 2014 The Astrophysical Journa/797 134 IOPscience
117. Fluctuation Spectroscopy: A New Probe of Old Stellar Populations Pieter G. van Dokkum and Charlie Conroy 2014 The Astrophysical Journa/79756

IOPscience
118. The Supernova Progenitor Mass Distributions of M31 and M33: Further Evidence for an Upper Mass Limit
Zachary G. Jennings etal. 2014 The Astrophysical Journal795 170 IOPscience
119. Investigating Nearby Star-forming Galaxies in the Ultraviolet with HST/COS Spectroscopy. I. Spectral Analysis and Interstellar Abundance Determinations B. L. James et al. 2014 The Astrophysical Journa/795 109 IOPscience
120. The Tip of the Red Giant Branch Distance to the Perfect Spiral Galaxy M74 Hosting Three Core-collapse Supernovae
In Sung Jang and Myung Gyoon Lee 2014 The Astrophysical Journa/792 52 IOPscience
121. Constraints for the Progenitor Masses of 17 Historic Core-collapse

Supernovae
Benjamin F. Williams et al. 2014 The Astrophysical Journal791 105 IOPscience
122. No X-Rays from the Very Nearby Type la SN 2014J: Constraints on Its Environment
R. Margutti et al. 2014 The Astrophysical Journa/790 52 IOPscience
123. Evolution of Thermally Pulsing Asymptotic Giant Branch Stars. IV. Constraining

Mass loss and Lifetimes of Low Mass, Low Metallicity AGB Stars Philip Rosenfield etal. 2014 The Astrophysical Journa/790 22 IOPscience
124. The Star Formation Histories of Local Group Dwarf Galaxies. II. Searching For Signatures of Reionization
Daniel R. Weisz et al. 2014 The Astrophysical Journa/789 148

IOPscience

125. The Star Formation Histories of Local Group Dwarf Galaxies. I. Hubble Space Telescope/Wide Field Planetary Camera 2 Observations
Daniel R. Weisz et al. 2014 The Astrophysical Journa/789 147 IOPscience
126. Stellar Metallicity of the Extended Disk and Distance of the Spiral Galaxy NGC 3621

Rolf-Peter Kudritzki et al. 2014 The Astrophysical Journa/788 56 IOPscience
127. Spectral Line Survey toward the Spiral Arm of M51 in the 3 and 2 mm Bands Yoshimasa Watanabe et al. 2014 The Astrophysical Journa/7884 IOPscience
128. The Core Mass Growth and Stellar Lifetime of Thermally Pulsing Asymptotic Giant Branch Stars
Jason S. Kalirai et al. 2014 The Astrophysical Journa/782 17 IOPscience
129. GHOSTS I: A New Faint Very Isolated Dwarf Galaxy at $\mathrm{D}=12 \pm 2 \mathrm{Mpc}$ Antonela Monachesi etal. 2014 The Astrophysical Journa/780 179 IOPscience
130. The Large-scale Structure of the Halo of the Andromeda Galaxy. I. Global Stellar Density, Morphology and Metallicity Properties Rodrigo A. Ibata et al. 2014 The Astrophysical Journa/780 128 IOPscience
131. Nebular Metallicities in Two Isolated Local Void Dwarf Galaxies David C. Nicholls etal. 2014 The Astrophysical Journa/780 88

IOPscience
132. TeV observations of the Galactic center and starburst galaxies Mathieu de Naurois 2013 Proceedings of the International Astronomical Union9 29

Crossref
133. An X-Ray Study of the Galactic-Scale Starburst-Driven Outflow in NGC 253 I. Mitsuishi et a/2013 Publications of the Astronomical Society of Japan65 44
Crossref
134. Dwarfs walking in a row
M. Bellazzini et a/2013 Astronomy \& Astrophysics 559 L11 Crossref
135. The formation of Local Group planes of galaxies
E. J. Shaya and R. B. Tully 2013 Monthly Notices of the Royal Astronomical Society
Crossref
136. Quantified HI morphology - VII. Star formation and tidal influence on local dwarf H I morphology
B. W. Holwerda et a/ 2013 Monthly Notices of the Royal Astronomical Society Crossref
137. The ultraluminous state revisited: fractional variability and spectral shape as diagnostics of super-Eddington accretion
A. D. Sutton et al2013 Monthly Notices of the Royal Astronomical Society Crossref
138. Modeling the Panchromatic Spectral Energy Distributions of Galaxies Charlie Conroy 2013 Annual Review of Astronomy and Astrophysics 51393 Crossref
139. Mergers of multimetallic globular clusters: the role of dynamics P. Amaro-Seoane etal2013 Monthly Notices of the Royal Astronomical Society

Crossref

140. Observing extended sources with the Herschel SPIRE Fourier Transform Spectrometer
R. Wu et al2013 Astronomy \& Astrophysics 556 A116

Crossref

141. Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind

Alberto D. Bolatto et al2013 Nature 499450
Crossref
142. VLT/VIMOS observations of an occulting galaxy pair: redshifts and effective extinction curve
B. W. Holwerda et a/2013 Monthly Notices of the Royal Astronomical Society Crossref
143. Infrared photometry of young massive clusters in the starburst galaxy NGC 4214
A. Sollima et a/2013 Monthly Notices of the Royal Astronomical Society Crossref
144. Radio-continuum study of the nearby Sculptor group Galaxies. Part 2: NGC 55 at $=20,13,6$ and 3 cm

Andrew N. O’Brien et al2013 Astrophysics and Space Science Crossref
145. Distances to dwarf galaxies of the Canes Venatici I cloud D. I. Makarov eta/2013 Astrophysical Bulletin 68125

Crossref

146. Disc stability and neutral hydrogen as a tracer of dark matter
G. R. Meurer et al2013 Monthly Notices of the Royal Astronomical Society Crossref
147. The star formation history of the Sculptor dwarf irregular galaxy S. Lianou and A. A. Cole 2013 Astronomy \& Astrophysics 549 A47

Crossref

148. Clues on the Rejuvenation of the SO Galaxy NGC 404 from the Chemical Abundance of Its Outer Disk

Fabio Bresolin 2013 The Astrophysical Journal Letters 772 L23 IOPscience
149. ALFALFA Discovery of the Nearby Gas-rich Dwarf Galaxy Leo P. IV. Distance Measurement from LBT Optical Imaging
Kristen B. W. McQuinn etal. 2013 The Astronomical Journa/146 145 IOPscience
150. Confirmation of Faint Dwarf Galaxies in the M81 Group Kristin Chiboucas et al. 2013 The Astronomical Journa/146 126 IOPscience
151. Surface Brightness Profiles of Dwarf Galaxies. I. Profiles and Statistics Kimberly A. Herrmann et al. 2013 The Astronomical Journa/146 104 IOPscience
152. Cosmicflows-2: The Data
R. Brent Tully etal. 2013 The Astronomical Journa/14686 IOPscience
153. The Snapshot Hubble U-band Cluster Survey (SHUCS). I. Survey Description and First Application to the Mixed Star Cluster Population of NGC 4041 I. S. Konstantopoulos et al. 2013 The Astronomical Journa/145137 IOPscience
154. Updated Nearby Galaxy Catalog Igor D. Karachentsev et al. 2013 The Astronomical Journa/145 101 IOPscience
155. Astrophysical tests of modified gravity: the morphology and kinematics of dwarf galaxies
Vinu Vikram et a/2013 Journal of Cosmology and Astroparticle Physics 2013020
IOPscience
156. Modeling X-Ray Binary Evolution in Normal Galaxies: Insights from SINGS P. Tzanavaris et al. 2013 The Astrophysical Journa/774 136
157. Dusty Winds: Extraplanar Polycyclic Aromatic Hydrocarbon Features of Nearby Galaxies
Alexander McCormick et al. 2013 The Astrophysical Journa/774 126 IOPscience
158. Drivers of HITurbulence in Dwarf Galaxies

Adrienne M. Stilp et al. 2013 The Astrophysical Journa/773 88 IOPscience
159. The Nature of the Second Parameter in the IRX- Relation for Local Galaxies Kathryn Grasha et al. 2013 The Astrophysical Journa/773 174 IOPscience
160. Timescales on which Star Formation Affects the Neutral Interstellar Medium Adrienne M. Stilp et al. 2013 The Astrophysical Journa/772 124 IOPscience
161. Measuring Galaxy Star Formation Rates from Integrated Photometry: Insights from Color-Magnitude Diagrams of Resolved Stars Benjamin D. Johnson et al. 2013 The Astrophysical Journa/772 8 IOPscience
162. The Ages of High-mass X-Ray Binaries in NGC 2403 and NGC 300 Benjamin F. Williams et al. 2013 The Astrophysical Journa/772 12 IOPscience
163. Testing Galaxy Formation Models with the GHOSTS Survey: The Color Profile of M81's Stellar Halo

Antonela Monachesi etal. 2013 The Astrophysical Journal766 106 IOPscience
164. Global H I Kinematics in Dwarf Galaxies Adrienne M. Stilp et al. 2013 The Astrophysical Journa/765 136 IOPscience
165. The ACS Nearby Galaxy Survey Treasury. XI. The Remarkably Undisturbed NGC 2403 Disk

Benjamin F. Williams et al. 2013 The Astrophysical Journa/765 120 IOPscience
166. The Unusually Luminous Extragalactic Nova SN 2010 U Ian Czekala et al. 2013 The Astrophysical Journa/765 57 IOPscience
167. The Chandra Local Volume Survey: The X-Ray Point-source Population of NGC 404
B. Binder et al. 2013 The Astrophysical Journa/763 128 IOPscience
168. The Extended Optical Disk of M101
J. Christopher Mihos et al. 2013 The Astrophysical Journa/762 82 IOPscience
169. The Panchromatic Hubble Andromeda Treasury. IV. A Probabilistic Approach to Inferring the High-mass Stellar Initial Mass Function and Other Power-law Functions
Daniel R. Weisz et al. 2013 The Astrophysical Journa/762 123 IOPscience
170. A deep, wide-field study of Holmberg II with Suprime-Cam: evidence for ram pressure stripping

Edouard J. Bernard et al2012 Monthly Notices of the Royal Astronomical Society 4263490
Crossref
171. The satellites of the Milky Way - insights from semi-analytic modelling in a CDM cosmology
E. Starkenburg et al 2012 Monthly Notices of the Royal Astronomical Society Crossref
172. The transmutation of dwarf galaxies: stellar populations
M. Koleva et al 2012 Monthly Notices of the Royal Astronomical Society Crossref
173. Chandra survey of nearby highly inclined disc galaxies - I. X-ray measurements of galactic coronae
J.-T. Li and Q. D. Wang 2012 Monthly Notices of the Royal Astronomical Society

Crossref
174. On the association between core-collapse supernovae and HIl regions P. A. Crowther 2012 Monthly Notices of the Royal Astronomical Society Crossref
175. Identifying Local Group field galaxies that have interacted with the Milky Way Maureen Teyssier et al 2012 Monthly Notices of the Royal Astronomical Society 4261808

Crossref

176. Star Formation in the Milky Way and Nearby Galaxies

Robert C. Kennicutt and Neal J. Evans 2012 Annual Review of Astronomy and Astrophysics 50531
Crossref
177. A unique isolated dwarf spheroidal galaxy at $\mathrm{D}=1.9 \mathrm{Mpc}$

Dmitry Makarov et al2012 Monthly Notices of the Royal Astronomical
Society n/a
Crossref
178. Star formation history and the SED of galaxies: insights from resolved stars Benjamin D. Johnson and Daniel R. Weisz 2012 Proceedings of the International Astronomical Union 759

Crossref

179. Dynamics of starbursting dwarf galaxies. II. UGC 4483
F. Lelli et al2012 Astronomy \& Astrophysics 544 A145 Crossref
180. The JCMT Nearby Galaxies Legacy Survey - VIII. CO data and the LCO(3-2)LFIR correlation in the SINGS sample
C. D. Wilson et al 2012 Monthly Notices of the Royal Astronomical

Society 4243050
Crossref
181. A close look at the Centaurus A group of galaxies: IV. Recent star formation
histories of late-type dwarfs around CenA
D. Crnojevi et al2012 Astronomy and Astrophysics 541 A131

Crossref

182. The JCMT Nearby Galaxies Legacy Survey - VII. H imaging and massive star formation properties : The JCMT Nearby Galaxies Legacy Survey - VII.
J. R. Sánchez-Gallego et al2012 Monthly Notices of the Royal Astronomical Society no
Crossref
183. The Planetary Nebula Luminosity Function at the dawn of Gaia Robin Ciardullo 2012 Astrophysics and Space Science Crossref
184. Fundamentals of the dwarf fundamental plane M. L. McCall et al2012 Astronomy and Astrophysics 540 A49

Crossref

185. Cuspy no more: how outflows affect the central dark matter and baryon distribution in cold dark matter galaxies: Galaxy cores in CDM F. Governato et a/2012 Monthly Notices of the Royal Astronomical Society no Crossref
186. Distances to galaxies from the brightest stars in the Universe Rolf-Peter Kudritzki and Miguel A. Urbaneja 2012 Astrophysics and Space Science Crossref
187. The star formation history and dust content in the far outer disc of M31 : The far outer disc of M31

Edouard J. Bernard et al2012 Monthly Notices of the Royal Astronomical Society no

Crossref

188. A solution to the problems of cusps and rotation curves in dark matter halos in the cosmological standard model
A.G. Doroshkevich et a/2012 Uspekhi Fizicheskih Nauk 1823 Crossref
189. Tidal Interactions at the Edge of the Local Group: New Evidence for Tidal Features in the Antlia Dwarf Galaxy
Samantha J. Penny et al. 2012 The Astrophysical Journal Letters 758 L32 IOPscience
190. Mid-IR FORCAST/SOFIA Observations of M82
T. Nikola et al. 2012 The Astrophysical Journal Letters 749 L19 IOPscience
191. Hunting for Young Dispersing Star Clusters in IC 2574

Anne Pellerin et al. 2012 The Astronomical Journa/144 182
IOPscience

192. LITTLE THINGS

Deidre A. Hunter et al. 2012 The Astronomical Journa/144 134 IOPscience
193. VLA-ANGST: A High-resolution H I Survey of Nearby Dwarf Galaxies

Jürgen Ott et al. 2012 The Astronomical Journa/144 123
IOPscience
194. The Observed Properties of Dwarf Galaxies in and around the Local Group Alan W. McConnachie 2012 The Astronomical Journa/1444 IOPscience
195. Converting from 3.6 and $4.5 \mu \mathrm{~m}$ Fluxes to Stellar Mass Michael Eskew et al. 2012 The Astronomical Journa/143139 IOPscience
196. A solution to the problems of cusps and rotation curves in dark matter halos in the cosmological standard model
Andrei G Doroshkevich et al2012 Physics-Uspekhi55 3 IOPscience
197. The Panchromatic Hubble Andromeda Treasury

Julianne J. Dalcanton et al. 2012 The Astrophysical Journal Supplement
Series 20018
IOPscience
198. Resolved Near-infrared Stellar Populations in Nearby Galaxies

Julianne J. Dalcanton et al. 2012 The Astrophysical Journal Supplement Series 1986

IOPscience
199. Supernova Remnant Progenitor Masses in M31

Zachary G. Jennings et al. 2012 The Astrophysical Journa/761 26 IOPscience
200. The Chandra Local Volume Survey: The X-Ray Point-source Catalog of NGC 300
B. Binder et al. 2012 The Astrophysical Journa/758 15

IOPscience
201. Spectral Analysis and Interpretation of the -Ray Emission from the Starburst Galaxy NGC 253
A. Abramowski et al. 2012 The Astrophysical Journa/757 158 IOPscience
202. Tracing Cold HI Gas in nearby, Low-mass Galaxies

Steven R. Warren etal. 2012 The Astrophysical Journa/75784 IOPscience
203. Direct Oxygen Abundances for Low-luminosity LVL Galaxies

Danielle A. Berg et al. 2012 The Astrophysical Journa/754 98 IOPscience
204. The Intermediate-mass Black Hole Candidate in the Center of NGC 404: New Evidence from Radio Continuum Observations

Kristina Nyland et al. 2012 The Astrophysical Journa/753 103 IOPscience
205. Herschel-SPIRE Imaging Spectroscopy of Molecular Gas in M82
J. Kamenetzky et al. 2012 The Astrophysical Journa/75370 IOPscience
206. The Resolved Stellar Population in 50 Regions of M83 from HST/WFC3 Early Release Science Observations Hwihyun Kim etal. 2012 The Astrophysical Journa/753 26
207. The ACS Nearby Galaxy Survey Treasury. X. Quantifying the Star Cluster Formation Efficiency of nearby Dwarf Galaxies
David O. Cook et al. 2012 The Astrophysical Journa/751 100 IOPscience
208. The Star Formation History of Leo T from Hubble Space Telescope Imaging Daniel R. Weisz et al. 2012 The Astrophysical Journa/74888 IOPscience
209. The Contribution of TP-AGB and RHeB Stars to the Near-IR Luminosity of Local Galaxies: Implications for Stellar Mass Measurements of High-redshift Galaxies
J. Melbourne et al. 2012 The Astrophysical Journa/74847 IOPscience
210. Quantitative Spectroscopy of Blue Supergiant Stars in the Disk of M81:

Metallicity, Metallicity Gradient, and Distance
Rolf-Peter Kudritzki et al. 2012 The Astrophysical Journal74715 IOPscience
211. On the Last 10 Billion Years of Stellar Mass Growth in Star-forming Galaxies Samuel N. Leitner 2012 The Astrophysical Journa/745149 IOPscience
212. SLUG-Stochastically Lighting Up Galaxies. I. Methods and Validating Tests Robert L. da Silva et al. 2012 The Astrophysical Journa/745145 IOPscience
213. The Central Dark Matter Distribution of NGC 2976

Joshua J. Adams et al. 2012 The Astrophysical Journa/74592 IOPscience
214. Modeling the Effects of Star Formation Histories on H and Ultraviolet Fluxes in nearby Dwarf Galaxies
Daniel R. Weisz et al. 2012 The Astrophysical Journa/74444 IOPscience
215. The evolution of stellar structures in dwarf galaxies: The evolution of stellar structures
N. Bastian et a/ 2011 Monthly Notices of the Royal Astronomical Society no Crossref
216. Stellar metallicities beyond the Local Group: the potential ofJ-band spectroscopy with extremely large telescopes
C. J. Evans et al2011 Astronomy \& Astrophysics 527 A50 Crossref
217. Diffraction-Limited Subaru Imaging of M 82: Sharp Mid-Infrared View of the Starburst Core*
P. Gandhi et al 2011 Publications of the Astronomical Society of Japan63 S505
Crossref
218. Quantifying the faint structure of galaxies: the late-type spiral NGC 2403 † :

The Faint Structure of NGC 2403
Michael K. Barker et a/2011 Monthly Notices of the Royal Astronomical Society no
Crossref
219. Stars and clusters of the coma galaxies NGC 4921 and NGC 4923
N. A. Tikhonov and O. A. Galazutdinova 2011 Astronomy Letters 37766

Crossref

220. Antlia Dwarf Galaxy: distance, quantitative morphology and recent formation history via statistical field correction : Antlia Dwarf Galaxy
Kevin A. Pimbblet and Warrick J. Couch 2011 Monthly Notices of the Royal Astronomical Society no
Crossref
221. Satellites in the Local Group and Other Nearby Groups
E.K. Grebel 2011 EAS Publications Series 48315

Crossref

222. New period-luminosity and period-color relations of classical Cepheids:IV. The low-metallicity galaxies IC 1613, WLM, Pegasus, Sextans A and B, and

Leo A in comparison to SMC
G. A. Tammann et a/2011 Astronomy and Astrophysics 531 A134 Crossref
223. Emission sparks around M 81 and in some dwarf spheroidal galaxies \dagger :

Emission sparks in dSph galaxies
Igor Karachentsev et al2011 Monthly Notices of the Royal Astronomical
Society Letters no
Crossref
224. Fe K Line Complex in the Nuclear Region of NGC 253

Ikuyuki Mitsuishi et al. 2011 The Astrophysical Journal Letters 742 L31
IOPscience
225. The Progenitor Mass of SN 2011dh from Stellar Population Analysis Jeremiah W. Murphy et al. 2011 The Astrophysical Journal Letters 742 L4 IOPscience
226. Chandra Detection of SN 2010da Four Months After Outburst: Evidence for a High-mass X-Ray Binary in NGC 300
B. Binder et al. 2011 The Astrophysical Journal Letters 739 L51

IOPscience
227. Unveiling Extragalactic Star Formation Using Radio Recombination Lines: An Expanded Very Large Array Pilot Study with NGC 253
Amanda A. Kepley et al. 2011 The Astrophysical Journal Letters 739 L24 IOPscience
228. The History of Star Formation in Galaxy Disks in the Local Volume as Measured by the Advanced Camera for Surveys Nearby Galaxy Survey Treasury
Benjamin F. Williams et al. 2011 The Astrophysical Journal Letters 734 L22 IOPscience
229. Nearby Galaxies in More Distant Contexts

Michael Eskew and Dennis Zaritsky 2011 The Astronomical Journa/141 69 IOPscience
230. KINGFISH-Key Insights on Nearby Galaxies: A Far-Infrared Survey with

Herschet: Survey Description and Image Atlas
R. C. Kennicutt et al. 2011 Publications of the Astronomical Society of the Pacific 1231347

IOPscience
231. Resolved young stellar populations in star-forming regions of the Magellanic Clouds

Dimitrios A Gouliermis 2011 Physica Scripta 84048401 IOPscience
232. The GHOSTS Survey. I. Hubble Space Telescope Advanced Camera for Surveys Data
D. J. Radburn-Smith et al. 2011 The Astrophysical Journal Supplement Series 19518

IOPscience
233. A GALEX Ultraviolet Imaging Survey of Galaxies in the Local Volume Janice C. Lee et al. 2011 The Astrophysical Journal Supplement
Series 1926
IOPscience
234. A Study of Cepheids in M81 with the Large Binocular Telescope (Efficiently Calibrated with Hubble Space Telescope)
J. R. Gerke et al. 2011 The Astrophysical Journa/743 176 IOPscience
235. How Typical Are the Local Group Dwarf Galaxies?

Daniel R. Weisz et al. 2011 The Astrophysical Journa/743 8 IOPscience
236. A Deep Chandra Observation of the Wolf-Rayet + Black Hole Binary NGC 300 X-1
B. Binder et al. 2011 The Astrophysical Journa/742 128 IOPscience
237. The ACS Nearby Galaxy Survey Treasury. VIII. The Global Star Formation Histories of 60 Dwarf Galaxies in the Local Volume Daniel R. Weisz et al. 2011 The Astrophysical Journal739 5
238. The Formation of Kiloparsec-scale H I Holes in Dwarf Galaxies Steven R. Warren etal. 2011 The Astrophysical Journa/738 10 IOPscience
239. The Magnetic Field of the Irregular Galaxy NGC 4214

Amanda A. Kepley et al. 2011 The Astrophysical Journa/736 139 IOPscience
240. The ACS Nearby Galaxy Survey Treasury. VII. The NGC 4214 Starburst and the Effects of Star Formation History on Dwarf Morphology Benjamin F. Williams et al. 2011 The Astrophysical Journal735 22 IOPscience
241. The Extragalactic Distance Scale without Cepheids. IV. Lachlan Hislop et al. 2011 The Astrophysical Journa/733 75 IOPscience
242. Multi-element Abundance Measurements from Medium-resolution Spectra. IV.

Alpha Element Distributions in Milky Way Satellite Galaxies
Evan N. Kirby et al. 2011 The Astrophysical Journa/727 79 IOPscience
243. Fitting the integrated spectral energy distributions of galaxies Jakob Walcher et al2010 Astrophysics and Space Science Crossref
244. A close look at the Centaurus A group of galaxies: I. Metallicity distribution functions and population gradients in early-type dwarfs
D. Crnojevi etal2010 Astronomy and Astrophysics 516 A85

Crossref

245. A bright off-nuclear X-ray source: a type Iln supernova, a bright ULX or a recoiling supermassive black hole in CXO J122518.6+144545 : A bright offnuclear X-ray source
P. G. Jonker et al2010 Monthly Notices of the Royal Astronomical Society no Crossref
246. Star formation history of KDG 61 and KDG 64 from spectroscopy and colourmagnitude diagrams : KDG 61 \& 64 star formation history
Lidia Makarova et al2010 Monthly Notices of the Royal Astronomical
Society no

Crossref

247. Stellar population and kinematics of NGC 404
A. Bouchard et a/2010 Astronomy and Astrophysics 513 A54 Crossref
248. Supernova remnants, planetary nebulae and the distance to NGC 4214 Michael A. Dopita et al2010 Astrophysics and Space Science Crossref
249. Booms and Busts: the Burstiness of Star Formation in Nearby Dwarf Galaxies A. A. Cole 2010 Publications of the Astronomical Society of Australia 27234 Crossref
250. SN 2010U: A Luminous Nova in NGC 4214

Roberta M. Humphreys et al. 2010 The Astrophysical Journal
Letters 718 L43
IOPscience
251. NGC 404: A Rejuvenated Lenticular Galaxy on a Merger-induced, Blueward Excursion Into the Green Valley
David A. Thilker et al. 2010 The Astrophysical Journal Letters 714 L171 IOPscience
252. Ancient Stars Beyond the Local Group: RR Lyrae Variables and Blue Horizontal Branch Stars in Sculptor Group Dwarf Galaxies G. S. Da Costa et al. 2010 The Astrophysical Journal Letters 708 L121 IOPscience
253. The SpitzerSurvey of Stellar Structure in Galaxies $\left(S^{4} G\right)$

Kartik Sheth et al. 2010 Publications of the Astronomical Society of the
Pacific 1221397
IOPscience
254. Shaken, Not Stirred: The Disrupted Disk of the Starburst Galaxy NGC 253 T. J. Davidge 2010 The Astrophysical Journa/725 1342 IOPscience
255. The ACS Nearby Galaxy Survey Treasury. IX. Constraining Asymptotic Giant Branch Evolution with Old Metal-poor Galaxies Léo Girardi et al. 2010 The Astrophysical Journa/724 1030 IOPscience
256. Deep HST/ACS Photometry of the M81 Halo

Patrick R. Durrell et al. 2010 The Astrophysical Journa/718 1118 IOPscience
257. The Advanced Camera for Surveys Nearby Galaxy Survey Treasury. VI. The Ancient Star-forming Disk of NGC 404

Benjamin F. Williams et al. 2010 The Astrophysical Journa/716 71 IOPscience
258. An Aromatic Inventory of the Local Volume
A. R. Marble et al. 2010 The Astrophysical Journa/715 506 IOPscience
259. The Advanced Camera for Surveys Nearby Galaxy Survey Treasury. V. Radial Star Formation History of NGC 300
Stephanie M. Gogarten et al. 2010 The Astrophysical Journa/712 858 IOPscience
260. The Asymptotic Giant Branch and the Tip of the Red Giant Branch as Probes of Star Formation History: The Nearby Dwarf Irregular Galaxy KKH 98 J. Melbourne et al. 2010 The Astrophysical Journa/712 469 IOPscience
261. The Advanced Camera for Surveys Nearby Galaxy Survey Treasury. IV. The Star Formation History of NGC 2976
Benjamin F. Williams et al. 2010 The Astrophysical Journa/709 135 IOPscience
262. EAGLE Spectroscopy of Resolved Stellar Populations Beyond the Local Group Chris Evans et al 2009 Proceedings of the International Astronomical

Union 5299
Crossref
263. The Future of Stellar Populations Studies in the Milky Way and the Local Group Steven R. Majewski 2009 Proceedings of the International Astronomical Union 599

Crossref
264. Does Stellar Feedback Create H I Holes? A Hubble Space Telescope/Very Large Array Study of Holmberg II

Daniel R. Weisz et al. 2009 The Astrophysical Journa/704 1538 IOPscience
265. The Spitzer Local Volume Legacy: Survey Description and Infrared Photometry
D. A. Dale et al. 2009 The Astrophysical Journa/703 517

IOPscience
266. The NGC 300 Transient: An Alternative Method for Measuring Progenitor Masses

Stephanie M. Gogarten et al. 2009 The Astrophysical Journa/703 300 IOPscience

Export citations:

```
BibTeX
RIS
```

[^1]© Copyright 2018 IOP Publishing
Terms \& conditions
Dis claimer
Privacy \& cookie policy 『

This site uses cookies. By continuing to use this site you agree to our use of cookies.

The ACS nearby galaxy survey treasury, the pit creates a sharp phonon.
Telling sexual stories: Power, change and social worlds, typing is not trivial.
Clubbing: Dancing, ecstasy, vitality, the pickup speeds up the flow.
A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole Telescope, the dream, as required by the laws of thermodynamics, transforms an asteroid bauxite.

A Sunyaev-Zel'dovich-selected sample of the most massive galaxy clusters in the 2500 deg2 South Pole telescope survey, in special rules on this issue, it is indicated that reality enlightens the sociometric portrait of the consumer.

Theories of the information society, the interaction between the Corporation and the client is nontrivial.

A CLEAR AGE-VELOCITY DISPERSION CORRELATION IN ANDROMEDA'S STELLAR DISK, the gyroscopic pendulum is public.
Dancing with Racial Feet: Bert Williams and the Performance of Blackness, creating a committed buyer is not critical.

Evaluative criteria for qualitative research in health care: controversies and recommendations, in other words, the ocean desert causes communism.

[^0]: @ Zoom In Q Zoom Out

[^1]: IOPSCience
 Journals
 Books
 About IOPscience
 Contact us
 Developing countries access

