Pulsars as the sources of high energy cosmic ray positrons.

Dan Hoppera,b, Pasquale Blasia,c,d and Pasquale Dario Serpicoe,a

Published 12 January 2009 • *Journal of Cosmology and Astroparticle Physics*, Volume 2009, January 2009

1535 Total downloads

Cited by 293 articles

Share this article

Author e-mails

dhooper@fnal.gov
blasi@arcetri.astro.it
serpico@cern.ch

Author affiliations

a Theoretical Astrophysics, Fermi National Accelerator Laboratory, Batavia U.S.A.

b Department of Astronomy and Astrophysics, The University of Chicago, Chicago
Abstract

Recent results from the PAMELA satellite indicate the presence of a large flux of positrons (relative to electrons) in the cosmic ray spectrum between approximately 10 and 100 GeV. As annihilating dark matter particles in many models are predicted to contribute to the cosmic ray positron spectrum in this energy range, a great deal of interest has resulted from this observation. Here, we consider pulsars (rapidly spinning, magnetized neutron stars) as an alternative source of this signal. After calculating the contribution to the cosmic ray positron and electron spectra from
pulsars, we find that the spectrum observed by PAMELA could plausibly originate from such sources. In particular, a significant contribution is expected from the sum of all mature pulsars throughout the Milky Way, as well as from the most nearby mature pulsars (such as Geminga and B0656+14). The signal from nearby pulsars is expected to generate a small but significant dipole anisotropy in the cosmic ray electron spectrum, potentially providing a method by which the Fermi gamma-ray space telescope would be capable of discriminating between the pulsar and dark matter origins of the observed high energy positrons.

Export citation and abstract

References

[1]

[2]
O. Adriani *et al.*, *Observation of an anomalous positron abundance in the cosmic radiation*, arXiv:0810.4995

[3]

[4]

[5]
L. Bergstrom, T. Bringmann and J. Edsjo, New positron spectral features from supersymmetric dark matter - a way to explain the PAMELA data?,
arXiv:0808.3725

M. Cirelli and A. Strumia, Minimal dark matter predictions and the PAMELA positron excess, arXiv:0808.3867

M. Cirelli, M. Kadastik, M. Raidal and A. Strumia, Model-independent implications of the e^+, e^-, anti-proton cosmic ray spectra on properties of dark matter, arXiv:0809.2409

M. Cirelli, A. Strumia and M. Tamburini, 2007 Cosmology and astrophysics of

P. Grajek, G. Kane, D.J. Phalen, A. Pierce and S. Watson, Neutralino dark matter from indirect detection revisited, arXiv:0807.1508

F.A Aharonian, A.M. Atoyan and H.J. Volk, 1995 High energy electrons and positrons in cosmic rays as an indicator of the existence of a nearby cosmic tevatron, Astron. Astrophys. 294 L41

I. Buesching, O.C. de Jager, M.S. Potgieter and C. Venter, A cosmic ray positron anisotropy due to two middle-aged, nearby pulsars?, arXiv:0804.0220

M. Vietri, 2008 Foundations of high-energy astrophysics, University Of Chicago Press, Chicago U.S.A.

X. Chi, E.C.M. Young and K.S. Cheng, 1995 Pulsar-wind origin of cosmic ray
positrons, Astrophys. J. 459 L83

[29] Particle Data Group collaboration, C. Amsler et al., 2008 Review of particle physics, Phys. Lett. B 667 1

[31] O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, arXiv:0810.4994

Export references:

Citations
1. *Lessons from HAWC pulsar wind nebulae observations: The diffusion constant is not a constant; pulsars remain the likeliest sources of the anomalous positron fraction; cosmic rays are trapped for long periods of time in pockets of inefficient diffusion*
 Stefano Profumo et al 2018 Physical Review D 97
 Crossref

2. *A laminar model for the magnetic field structure in bow-shock pulsar wind nebulae*
 Crossref

3. *Effect of the diffusion parameters on the observed γ-ray spectrum of sources and their contribution to the local all-electron spectrum: the EDGE code*
 R. López-Coto et al 2018 Astroparticle Physics
 Crossref

4. *Nucleosynthesis in Supernovae*
 Friedrich-Karl Thielemann et al 2018 Space Science Reviews 214
 Crossref

5. *Roberto Aloisio et al 2018 1*
 Crossref

6. *Signatures of photon-scalar interaction in astrophysical situations*
 Avijit K. Ganguly and Manoj K. Jaiswal 2018 Journal of the Korean Physical Society 72 6
 Crossref

7. *A precision search for WIMPs with charged cosmic rays*
 Annika Reinert and Martin Wolfgang Winkler 2018 Journal of Cosmology and Astroparticle Physics 2018 055
 IOPscience

Crossref

10. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons
G. Ambrosi et al 2017 *Nature*
Crossref

11. Using HAWC to discover invisible pulsars
Tim Linden et al 2017 *Physical Review D* *96*
Crossref

12. HAWC observations strongly favor pulsar interpretations of the cosmic-ray positron excess
Dan Hooper et al 2017 *Physical Review D* *96*
Crossref

13. Kazumi Kashiyama 2017 *446* 279
Crossref

14. A dark matter model that reconciles tensions between the cosmic-ray e ± excess and the gamma-ray and CMB constraints
Qian-Fei Xiang et al 2017 *Physics Letters B*
Crossref

15. Review of the results of measurements of the fluxes of the charged components of galactic cosmic rays in the experiments PAMELA and AMS-02
V. V. Alekseev et al 2017 *Physics of Particles and Nuclei* *48* 687
Crossref

16. Excesses of cosmic ray spectra from a single nearby source
Wei Liu et al 2017 *Physical Review D* *96*
Crossref

17. Investigating the origin of high-energy cosmic-ray electrons with Monte Carlo
18. Possible evidence for the stochastic acceleration of secondary antiprotons by supernova remnants
 Ilias Cholis et al 2017 Physical Review D 95

19. Secondary cosmic positrons in an inhomogeneous diffusion model
 Rolf Kappl and Annika Reinert 2017 Physics of the Dark Universe 16 71

20. Late decaying 2-component dark matter scenario as an explanation of the AMS-02 positron excess
 Jatan Buch et al 2017 Journal of Cosmology and Astroparticle Physics 2017 028

21. A self-consistent model of cosmic-ray fluxes and positron excess: roles of nearby pulsars and a sub-dominant source population
 Jagdish C. Joshi and Soebur Razzaque 2017 Journal of Cosmology and Astroparticle Physics 2017 029

22. AMS-02 positron excess and indirect detection of three-body decaying dark matter
 Hsin-Chia Cheng et al 2017 Journal of Cosmology and Astroparticle Physics 2017 041

23. Updated collider and direct detection constraints on Dark Matter models for the Galactic Center gamma-ray excess
 Miguel Escudero et al 2017 Journal of Cosmology and Astroparticle Physics 2017 038

24. Fermi-LAT kills dark matter interpretations of AMS-02 data. Or not?
25. Dipole anisotropy in cosmic electrons and positrons: inspection on local sources
 S. Manconi et al 2017 Journal of Cosmology and Astroparticle Physics 2017 006
 IOPscience

26. Gravitational Bhabha scattering
 A F Santos and Faqir C Khanna 2017 Classical and Quantum Gravity 34 205007
 IOPscience

27. Electron-capture isotopes Could Constrain Cosmic-Ray Propagation Models
 IOPscience

28. Theoretical Interpretation of Pass 8 Fermi-LAT e^+ + e^- Data
 IOPscience

29. Positrons and Antiprotons in Galactic Cosmic Rays
 R. Cowsik 2016 Annual Review of Nuclear and Particle Science 66 297
 Crossref

30. Constraining the production of cosmic rays by pulsars
 Crossref

31. About detection of precessing circumpulsar discs
 Crossref

32. A review of indirect searches for particle dark matter
 Jennifer M. Gaskins 2016 Contemporary Physics 1
 Crossref
33. Searching for vector dark matter via Higgs portal at the LHC
 Chuan-Hung Chen and Takaaki Nomura 2016 Physical Review D 93 Crossref

34. Light dark sector searches at low-energy high-luminosity e^+e^- colliders
 Peng-Fei Yin and Shou-Hua Zhu 2016 Frontiers of Physics 11 Crossref

35. The characterization of the gamma-ray signal from the central milky way: A
case for annihilating dark matter
 Tansu Daylan et al 2016 Physics of the Dark Universe Crossref

36. Probing the astrophysical origin of high-energy cosmic-ray electrons with
 Monte Carlo simulation
 R. Attallah 2016 Journal of Cosmology and Astroparticle Physics 2016 025 IOPscience

37. Model-independent indirect detection constraints on hidden sector dark
 matter
 Gilly Elor et al 2016 Journal of Cosmology and Astroparticle Physics 2016 024 IOPscience

38. Dark matter vs. astrophysics in the interpretation of AMS-02 electron and
 positron data
 Mattia Di Mauro et al 2016 Journal of Cosmology and Astroparticle Physics 2016 031 IOPscience

39. Fermi/LAT observations of dwarf galaxies highly constrain a dark matter
 interpretation of excess positrons seen in AMS-02, HEAT, and PAMELA
 Alejandro López et al 2016 Journal of Cosmology and Astroparticle Physics 2016 033 IOPscience

40. A facility to search for hidden particles at the CERN SPS: the SHiP physics case
41. The B/C and Sub-iron/Iron Cosmic Ray Ratios—Further Evidence in Favor of the Spiral-Arm Diffusion Model
 David Benyamin et al. 2016 The Astrophysical Journal 826 47
 IOPscience

42. micrOMEGAs4.1: Two dark matter candidates
 G. Bélanger et al. 2015 Computer Physics Communications 192 322
 Crossref

43. Indirect and direct search for dark matter
 M. Klasen et al. 2015 Progress in Particle and Nuclear Physics 85 1
 Crossref

44. What can we learn from a sharply falling positron fraction?
 Timur Delahaye et al. 2015 EPJ Web of Conferences 105 02003
 Crossref

45. Confronting recent AMS-02 positron fraction and Fermi-LAT extragalactic -ray background measurements with gravitino dark matter
 Edson Carquin et al. 2015 Physics of the Dark Universe
 Crossref

46. Search for parity violation in cosmic rays
 A. A. Andrianov et al. 2015 Theoretical and Mathematical Physics 184 1234
 Crossref

47. Cosmic rays and hadronic interactions
 Paolo Lipari et al. 2015 EPJ Web of Conferences 99 14001
 Crossref

48. Dark matter annihilation in the first galaxy haloes
 Crossref
49. Dark matter production in the early Universe: Beyond the thermal WIMP paradigm
Howard Baer et al 2015 Physics Reports 555 1
Crossref

50. Spectrum and fraction of cosmic ray positrons: results of the anomalous diffusion approach
IOPscience

51. An observable electron-positron anisotropy cannot be generated by dark matter
Stefano Profumo 2015 Journal of Cosmology and Astroparticle Physics 2015 043
IOPscience

52. Origin of the Cosmic Ray Positrons Observed near Earth: Meson Decay or Dark Matter Decay?
IOPscience

53. Spectra of Cosmic Ray Electrons and Diffuse Gamma Rays with the Constraints of AMS-02 and HESS Data
Ding Chen et al. 2015 The Astrophysical Journal 811 154
IOPscience

54. Search for Anisotropies in Cosmic-ray Positrons Detected By the PAMELA Experiment
O. Adriani et al. 2015 The Astrophysical Journal 811 21
IOPscience

55. Cosmic-ray Positrons from Millisecond Pulsars
C. Venter et al. 2015 The Astrophysical Journal 807 130
IOPscience

56. New Calculation of Antiproton Production by Cosmic Ray Protons and Nuclei
Michael Kachelriess et al. 2015 The Astrophysical Journal 803 54
57. Circular Polarization of Pulsar Wind Nebulae and the Cosmic-Ray Positron Excess
 Tim Linden 2015 The Astrophysical Journal 799 200

58. Decaying WIMP dark matter for AMS-02 cosmic positron excess
 Ki-Young Choi et al 2014 Physical Review D 89

59. Current dark matter annihilation constraints from CMB and low-redshift data
 Mathew S. Madhavacheril et al 2014 Physical Review D 89

60. Simplified dark matter models for the Galactic Center gamma-ray excess
 Asher Berlin et al 2014 Physical Review D 89

61. Leptophilic dark matter with Z interactions
 Nicole F. Bell et al 2014 Physical Review D 90

62. High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station
 L. Accardo et al 2014 Physical Review Letters 113

63. Effect of black holes in local dwarf spheroidal galaxies on gamma-ray constraints on dark matter annihilation
 Alma X. Gonzalez-Morales et al 2014 Physical Review D 90

64. Dark matter and dark force in the type-I inert 2HDM with local $U(1)$ H gauge symmetry
65. **Inert dark matter in type-II seesaw**
Chuan-Hung Chen and Takaaki Nomura 2014 Journal of High Energy Physics **2014**
[Crossref]

66. **Indirect searches for dark matter with the Fermi LAT instrument**
M. N. Mazziotta 2014 International Journal of Modern Physics A **29** 1430030
[Crossref]

67. **Implications of the AMS-02 positron fraction in cosmic rays**
Qiang Yuan et al 2014 Astroparticle Physics
[Crossref]

68. **The PAMELA experiment and antimatter in the universe**
M. Boezio et al 2014 Hyperfine Interactions
[Crossref]

69. **PAMELA and AMS-02 e+ and e− spectra are reproduced by three-dimensional cosmic-ray modeling**
Daniele Gaggero et al 2014 Physical Review D **89**
[Crossref]

70. **Starbursts and high-redshift galaxies are radioactive: high abundances of 26Al and other short-lived radionuclides**
[Crossref]

71. **Dark matter annihilations and decays after the AMS-02 positron measurements**
Alejandro Ibarra et al 2014 Physical Review D **89**
[Crossref]

72. **Constraining the origin of the rising cosmic ray positron fraction with the boron-to-carbon ratio**
Ilias Cholis and Dan Hooper 2014 Physical Review D **89**
[Crossref]
73. Constraining dark matter capture and annihilation cross sections by searching for neutrino signature from the Earth’s core
 Fei-Fan Lee et al 2014 Physical Review D 89
 Crossref

74. AMS-02 positron excess: New bounds on dark matter models and hint for primary electron spectrum hardening
 Lei Feng et al 2014 Physics Letters B 728 250
 Crossref

75. A hadronic explanation of the lepton anomaly
 Philipp Mertsch and Subir Sarkar 2014 Journal of Physics: Conference Series 531 012008
 IOPscience

76. First Results of the AMS-02 Experiment on the ISS
 Jorge Casaus (On behalf of the Ams Collaboration) 2014 Journal of Physics: Conference Series 531 012007
 IOPscience

77. Can AMS-02 discriminate the origin of an anti-proton signal?
 Valeria Pettorino et al 2014 Journal of Cosmology and Astroparticle Physics 2014 078
 IOPscience

78. Indirect detection analysis: wino dark matter case study
 Andrzej Hryczuk et al 2014 Journal of Cosmology and Astroparticle Physics 2014 031
 IOPscience

79. Interpretation of AMS-02 electrons and positrons data
 M. Di Mauro et al 2014 Journal of Cosmology and Astroparticle Physics 2014 006
 IOPscience

80. Optimized dark matter searches in deep observations of Segue 1 with MAGIC
 J. Aleksie et al 2014 Journal of Cosmology and Astroparticle
81. What Could We Learn from a Sharply Falling Positron Fraction?

82. Recovering the Observed B/C Ratio in a Dynamic Spiral-armed Cosmic Ray Model
David Benyamin et al. 2014 The Astrophysical Journal 782 34

83. Experimental Summary: Very High Energy Cosmic Rays and their Interactions
Karl-Heinz Kampert et al 2013 EPJ Web of Conferences 52 13001

84. Dark matter from conformal sectors
Durmu et al 2013 Physics Letters B

85. The cosmic-ray positron excess from a local Dark Matter over-density
Andi Hektor et al 2013 Physics Letters B

86. Dark matter versus pulsars: catching the impostor

87. Dynamical Dark Matter and the positron excess in light of AMS results
Keith R. Dienes et al 2013 Physical Review D 88

88. Constrained cogenesis of visible and dark matter with AMS-02 and Xenon-100
Kazunori Kohri and Narendra Sahu 2013 Physical Review D 88

89. Cosmic Rays in the Milky Way and Beyond
90. **INDIRECT SEARCHES FOR DECAYING DARK MATTER**
 Crossref

91. **New Limits on Dark Matter Annihilation from Alpha Magnetic Spectrometer Cosmic Ray Positron Data**
 Crossref

92. **On physics beyond standard model**
 Yang Hu et al 2013 *Frontiers of Physics* **8** 516
 Crossref

93. **Superexponential Cutoff as a Probe of Annihilating Dark Matter**
 Crossref

94. **Dark matter and pulsar origins of the rising cosmic ray positron fraction in light of new data from the AMS**
 Ilias Cholis and Dan Hooper 2013 *Physical Review D* **88**
 Crossref

95. **Three-Dimensional Model of Cosmic-Ray Lepton Propagation Reproduces Data from the Alpha Magnetic Spectrometer on the International Space Station**
 Crossref

96. **Pulsar interpretation for the AMS-02 result**
 Crossref

97. **Status of dark matter detection**
 Xiao-Jun Bi et al 2013 *Frontiers of Physics*
98. Gamma Astronomy: open theoretical problems
 Paolo Lipari 2013 Nuclear Physics B - Proceedings Supplements 239-240 35

99. Experimental Summary: Very High Energy Cosmic Rays and their Interactions
 Karl-Heinz Kampert et al 2013 EPJ Web of Conferences 52 13001

100. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV
 M. Aguilar et al 2013 Physical Review Letters 110

101. Possibility of Testing the Light Dark Matter Hypothesis with the Alpha Magnetic Spectrometer
 Dan Hooper and Wei Xue 2013 Physical Review Letters 110

102. Possible consequences of a disk around B0656+14 on e+e− and near-1Hz gravitational wave production
 C. Grimani 2013 Advances in Space Research 51 322

103. Internal bremsstrahlung signatures in light of direct dark matter searches
 Mathias Garny et al 2013 Journal of Cosmology and Astroparticle Physics 2013 046

104. Model independent interpretation of recent CR lepton data after AMS-02
 Daniele Gaggero and Luca Maccione 2013 Journal of Cosmology and Astroparticle Physics 2013 011

105. Implications of the first AMS-02 measurement for dark matter annihilation and decay
106. The case for three-body decaying dark matter
Hsin-Chia Cheng et al 2013 Journal of Cosmology and Astroparticle Physics 2013 033
IOPscience

107. Probing the Pulsar Origin of the Anomalous Positron Fraction with AMS-02 and Atmospheric Cherenkov Telescopes
Tim Linden and Stefano Profumo 2013 The Astrophysical Journal 772 18
IOPscience

108. VERITAS deep observations of the dwarf spheroidal galaxy Segue 1
E. Aliu et al 2012 Physical Review D 85
Crossref

109. Study of the gamma-ray spectrum from the Galactic Center in view of multi-TeV dark matter candidates
Alexander Belikov et al 2012 Physical Review D 86
Crossref

110. The Empirical Case For 10 GeV Dark Matter
Dan Hooper 2012 Physics of the Dark Universe
Crossref

111. Secluded dark matter coupled to a hidden CFT
Crossref

112. Sommerfeld enhancement from multiple mediators
Crossref

113. Cosmic relic abundance and gravity
S. Capozziello et al 2012 Physics Letters B
Crossref
114. Open problems in particle astrophysics
 Paolo Lipari 2012 Nuclear Instruments and Methods in Physics Research
 Section A Accelerators Spectrometers Detectors and Associated Equipment
 Crossref

115. Cosmic ray Monte Carlo: A global fitting method in studying the properties of the new sources of cosmic e^± excesses
 Jie Liu et al 2012 Physical Review D 85 043507
 Crossref

116. Conservative upper limits on WIMP annihilation cross section from Fermi-LAT rays
 Francesca Calore et al 2012 Physical Review D 85 023004
 Crossref

117. Pseudo-familon dark matter
 Christopher D. Carone 2012 Physics Letters B 707 529
 Crossref

118. Dissecting cosmic-ray electron-positron data with Occam’s razor: the role of known pulsars
 Stefano Profumo 2012 Central European Journal of Physics 10 1
 Crossref

119. The PAMELA space mission for antimatter and dark matter searches in space
 M. Boezio et al 2012 Hyperfine Interactions 213 147
 Crossref

120. Astrophysical models for the origin of the positron “excess”
 Pasquale D. Serpico 2012 Astroparticle Physics 39-40 2
 Crossref

121. Diffuse galactic gamma rays at intermediate and high latitudes. I. Constraints on the ISM properties
 Ilias Cholis et al 2012 Journal of Cosmology and Astroparticle Physics 2012 004
122. Extracting the Size of the Cosmic Electron-Positron Anomaly
 Katie Auchettl and Csaba Balázs 2012 The Astrophysical Journal 749 184

123. Global fits of the nonuniversal Higgs model
 Leszek Roszkowski et al 2011 Physical Review D 83 015014

124. Implications of high-resolution simulations on indirect dark matter searches
 Lidia Pieri et al 2011 Physical Review D 83 023518

125. Higgsino dark matter model consistent with galactic cosmic ray data and possibility of discovery at LHC-7
 Ning Chen et al 2011 Physical Review D 83 023506

126. White dwarf pulsars as possible cosmic ray electron-positron factories
 Kazumi Kashiyama et al 2011 Physical Review D 83 023002

127. W/Z bremsstrahlung as the dominant annihilation channel for dark matter
 Nicole Bell et al 2011 Physical Review D 83 013001

128. Prospects of detecting gamma-ray emission from galaxy clusters: Cosmic rays and dark matter annihilations
 Anders Pinzke et al 2011 Physical Review D 84 123509

129. Propagation of galactic cosmic rays
 Vladimir Ptuskin 2011 Astroparticle Physics

130. Dark matter annihilation signatures from electroweak bremsstrahlung
 Nicole F. Bell et al 2011 Physical Review D 84 103517
131. *Dark matter signals and cosmic ray anomalies in an extended seesaw model*
 [Crossref](https://doi.org/10.1016/j.physletb.2011.03.005)

132. *Froggatt-Nielsen model for leptophilic scalar dark matter decay*
 Christopher Carone and Reinard Primulando 2011 *Physical Review D* **84** 035002
 [Crossref](https://doi.org/10.1103/PhysRevD.84.035002)

133. *Charge asymmetric cosmic ray signals from dark matter decay*
 Spencer Chang and Lisa Goodenough 2011 *Physical Review D* **84** 023524
 [Crossref](https://doi.org/10.1103/PhysRevD.84.023524)

134. *Cosmic X-ray and gamma-ray background from dark matter annihilation*
 Jesús Zavala et al 2011 *Physical Review D* **83** 123513
 [Crossref](https://doi.org/10.1103/PhysRevD.83.123513)

135. *Results from PAMELA, ATIC and FERMI: Pulsars or dark matter?*
 DEBTOSH CHOWDHURY et al 2011 *Pramana*
 [Crossref](https://doi.org/10.1007/s12043-011-0092-3)

136. *Dark matter relic abundance and big bang nucleosynthesis in Horava’s gravity*
 G. Lambiase 2011 *Physical Review D* **83** 107501
 [Crossref](https://doi.org/10.1103/PhysRevD.83.107501)

137. *Testing the dark matter annihilation model for the Wilkinson Microwave Anisotropy Probe haze: Models for the WMAP haze*
 Matthew McQuinn and Matias Zaldarriaga 2011 *Monthly Notices of the Royal Astronomical Society*
 [Crossref](https://doi.org/10.1111/j.1365-2966.2010.17598.x)

138. *New constraints from PAMELA anti-proton data on annihilating and decaying dark matter*
 Ilias Cholis 2011 *Journal of Cosmology and Astroparticle Physics* **2011** 007
 [IOPscience](https://iopscience.iop.org/article/10.1088/1475-7516/2011/01/007)
139. Searches for dark matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope
J. Aleksi et al 2011 Journal of Cosmology and Astroparticle Physics 2011 035
IOPscience

140. Weak corrections are relevant for dark matter indirect detection
Paolo Ciafaloni et al 2011 Journal of Cosmology and Astroparticle Physics 2011 019
IOPscience

141. Dark matter in UED: the role of the second KK level
G. Bélanger et al 2011 Journal of Cosmology and Astroparticle Physics 2011 009
IOPscience

142. Gamma-ray lines from radiative dark matter decay
Mathias Garny et al 2011 Journal of Cosmology and Astroparticle Physics 2011 032
IOPscience

143. Black holes in our galactic halo: compatibility with FGST and PAMELA data and constraints on the first stars
Pearl Sandick et al 2011 Journal of Cosmology and Astroparticle Physics 2011 018
IOPscience

144. Dark stars and boosted dark matter annihilation rates
Cosmin Ilie et al 2011 New Journal of Physics 13 053050
IOPscience

145. TeV Electron Spectrum for Probing Cosmic-ray Escape from a Supernova Remnant
Norita Kawanaka et al. 2011 The Astrophysical Journal 729 93
IOPscience

146. Galactic electrons and positrons at the Earth: new estimate of the primary and secondary fluxes
147. Can the Morphology of -Ray Emission Distinguish Annihilating from Decaying Dark Matter?
Céline Bœhm et al 2010 Physical Review Letters 105 221301

148. Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope
M. Ackermann et al 2010 Physical Review D 82 092003

149. Impact of propagation uncertainties on the potential dark matter contribution to the Fermi LAT mid-latitude -ray data
Daniel Cumberbatch et al 2010 Physical Review D 82 103521

150. Sommerfeld enhancements for thermal relic dark matter
Jonathan Feng et al 2010 Physical Review D 82 083525

151. Decaying dark matter from dark instantons
Christopher Carone et al 2010 Physical Review D 82 055028

152. Deep correlation between cosmic-ray anomaly and neutrino masses
Shigeki Matsumoto and Koichi Yoshioka 2010 Physical Review D 82 053009

Tim Linden et al 2010 Physical Review D 82 063529

154. Dark matter in natural supersymmetric extensions of the standard model
Francesc Ferrer and Christopher Spitzer 2010 Physical Review D 82 043532
155. Remarks on calculation of positron flux from galactic dark matter
 Maxim Perelstein and Bibhushan Shakya 2010 Physical Review D 82 043505
 Crossref

156. Positron fraction in cosmic rays and models of cosmic-ray propagation
 R. Cowsik and B. Burch 2010 Physical Review D 82 023009
 Crossref

157. The electron injection spectrum determined by anomalous excesses in
 cosmic ray, gamma ray, and microwave data
 Tongyan Lin et al 2010 Physical Review D 82 023518
 Crossref

158. Tight connection between direct and indirect detection of dark matter
 through Higgs portal couplings to a hidden sector
 Chiara Arina et al 2010 Physical Review D 82 015005
 Crossref

159. Positrons in cosmic rays from dark matter annihilations for uplifted Higgs
 regions in the MSSM
 Kenji Kadota et al 2010 Physical Review D 81 115006
 Crossref

160. Thermal relics in modified cosmologies: Bounds on evolution histories of
 the early Universe and cosmological boosts for PAMELA
 R. Catena et al 2010 Physical Review D 81 123522
 Crossref

161. Implications of CoGeNT and DAMA for light WIMP dark matter
 A. Liam Fitzpatrick et al 2010 Physical Review D 81 115005
 Crossref

162. Muon fluxes and showers from dark matter annihilation in the Galactic
 center
 Arif Emre Erkoca et al 2010 Physical Review D 81 096007
 Crossref
163. *Gamma-ray signatures of annihilation to charged leptons in dark matter substructure*
Matthew D. Kistler and Jennifer M. Siegal-Gaskins 2010 Physical Review D 81 103521
Crossref

164. *Sensitivity of the IceCube neutrino detector to dark matter annihilating in dwarf galaxies*
Pearl Sandick et al 2010 Physical Review D 81 083506
Crossref

165. *Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement*
Jesús Zavala et al 2010 Physical Review D 81 083502
Crossref

166. *Astrophysical implications of a visible dark matter sector from a custodially warped GUT*
Kaustubh Agashe et al 2010 Physical Review D 81 075012
Crossref

167. *Dark matter self-interactions and light force carriers*
Matthew R. Buckley and Patrick J. Fox 2010 Physical Review D 81 083522
Crossref

168. *Halo-Shape and Relic-Density Exclusions of Sommerfeld-Enhanced Dark Matter Explanations of Cosmic Ray Excesses*
Jonathan L. Feng et al 2010 Physical Review Letters 104 151301
Crossref

169. *Solar gamma rays powered by secluded dark matter*
Brian Batell et al 2010 Physical Review D 81 075004
Crossref

170. *Radio and gamma-ray constraints on dark matter annihilation in the Galactic center*
R. M. Crocker et al 2010 Physical Review D 81 063516
Crossref
171. *Limits on threshold and “Sommerfeld” enhancements in dark matter annihilation*
 Mihailo Backović and John P. Ralston 2010 Physical Review D 81 056002

172. *Sneutrino dark matter: Symmetry protection and cosmic ray anomalies*
 Durmu et al 2010 Physical Review D 81 035019

173. *Cascade events at IceCube + DeepCore as a definitive constraint on the dark matter interpretation of the PAMELA and Fermi anomalies*
 Sourav K. Mandal et al 2010 Physical Review D 81 043508

174. *Cosmic ray anomalies and dark matter annihilation to muons via a Higgs portal hidden sector*
 Kazunori Kohri et al 2010 Physical Review D 81 023530

175. *Detecting gamma-ray anisotropies from decaying dark matter: Prospects for Fermi LAT*
 Alejandro Ibarra and David Tran 2010 Physical Review D 81 023529

176. *High-energy neutrino signatures of dark matter*
 Matthew R. Buckley et al 2010 Physical Review D 81 016006

177. *Morphological tests of the pulsar and dark matter interpretations of the WMAP haze*
 J. Patrick Harding and Kevork N. Abazajian 2010 Physical Review D 81 023505

178. *Implications of an astrophysical interpretation of PAMELA and Fermi-LAT data for future searches of a positron signal from dark matter annihilations*
 Ki-Young Choi and Carlos E. Yaguna 2010 Physical Review D 81 023502
179. Distinguishing dark matter annihilation enhancement scenarios via halo shapes
Masahiro Ibe and Hai-Bo Yu 2010 Physics Letters B 692 70

180. ELECTRON/POSITRON EXCESSES IN THE COSMIC RAY SPECTRUM AND POSSIBLE INTERPRETATIONS

181. Cold dark matter in non-standard cosmologies, PAMELA, ATIC and Fermi LAT
C. Pallis 2010 Nuclear Physics B 831 217

182. Little Higgs model with new Z-parity and dark matter
C.S. Kim and Jubin Park 2010 Physics Letters B 688 323

183. Dark matter signals in space

184. Detection of antimatter in our Galaxy
Piergiorgio Picozza and Roberta Sparvoli 2010 Journal of Physics: Conference Series 203 012021

185. A possible explanation for the electron/positron excess of ATIC/PAMELA
Rui-Zhi Yang et al 2010 Research in Astronomy and Astrophysics 10 39

186. Discriminating the source of high-energy positrons with AMS-02
Miguel Pato et al 2010 Journal of Cosmology and Astroparticle Physics 2010 020
187. Constraints on decaying dark matter from Fermi observations of nearby galaxies and clusters
Leanna Dugger et al 2010 Journal of Cosmology and Astroparticle Physics 2010 015
IOPscience

188. Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum
Kevork N. Abazajian et al 2010 Journal of Cosmology and Astroparticle Physics 2010 041
IOPscience

189. Dark matter identification with gamma rays from dwarf galaxies
Maxim Perelstein and Bibhushan Shakya 2010 Journal of Cosmology and Astroparticle Physics 2010 016
IOPscience

190. Cosmic positron and antiproton constraints on the gauge-Higgs dark matter
Kingman Cheung et al 2010 Journal of Cosmology and Astroparticle Physics 2010 023
IOPscience

191. A new approach to searching for dark matter signals in Fermi-LAT gamma rays
Spencer Chang and Lisa Goodenough 2010 Journal of Cosmology and Astroparticle Physics 2010 035
IOPscience

192. Implications of the Fermi-LAT diffuse gamma-ray measurements on annihilating or decaying dark matter
Gert Hütsi et al 2010 Journal of Cosmology and Astroparticle Physics 2010 008
IOPscience

193. Constraining decaying dark matter with Fermi LAT gamma-rays
Le Zhang et al 2010 Journal of Cosmology and Astroparticle Physics 2010 027
IOPscience
194. Synchrotron emission from young and nearby pulsars
 Christopher M. Kelso and Dan Hooper 2010 Journal of Cosmology and Astroparticle Physics 2010 039
 IOPscience

195. Higgs in space!
 C.B. Jackson et al 2010 Journal of Cosmology and Astroparticle Physics 2010 004
 IOPscience

196. Dark matter detection in the BMSSM
 Nicolás Bernal and Andreas Goudelis 2010 Journal of Cosmology and Astroparticle Physics 2010 007
 IOPscience

197. The contribution of Fermi gamma-ray pulsars to the local flux of cosmic-ray electrons and positrons
 Leo Gendelev et al 2010 Journal of Cosmology and Astroparticle Physics 2010 016
 IOPscience

198. Dark matter direct detection signals inferred from a cosmological N-body simulation with baryons
 F.-S. Ling et al 2010 Journal of Cosmology and Astroparticle Physics 2010 012
 IOPscience

199. Decaying dark matter in light of the PAMELA and Fermi LAT data
 Alejandro Ibarra et al 2010 Journal of Cosmology and Astroparticle Physics 2010 009
 IOPscience

200. Fermi Gamma-ray Haze Via Dark Matter and Millisecond Pulsars
 IOPscience

201. Galactic Diffuse Gamma Rays—Recalculation Based on New Measurements of the Cosmic Electron Spectrum
202. *Is Cosmic Ray Electron Excess from Pulsars Spiky or Smooth?: Continuous and Multiple Electron/Positron Injections*
IOPscience

203. *Cosmic ray acceleration in supernova remnants and the FERMI/PAMELA data*
Markus Ahlers et al. 2009 *Physical Review D* **80** 123017
Crossref

204. *High energy positrons from annihilating dark matter*
Ilias Cholis et al. 2009 *Physical Review D* **80** 123511
Crossref

205. *Gamma ray lines: What will they tell us about supersymmetry?*
Carlos E. Yaguna 2009 *Physical Review D* **80** 115002
Crossref

206. *Explaining PAMELA and WMAP data through coannihilations in extended SUGRA with collider implications*
Crossref

207. *Intermediate Mass Black Holes and Nearby Dark Matter Point Sources: A Critical Reassessment*
Crossref

208. *Non-Abelian dark matter: Models and constraints*
Fang Chen et al. 2009 *Physical Review D* **80** 083516
Crossref

209. *PAMELA and Fermi LAT signals from long-lived Kaluza-Klein dark matter*
Nobuchika Okada and Toshifumi Yamada 2009 *Physical Review D* **80** 075010
210. Neutralinos in an extension of the minimal supersymmetric standard model as the source of the PAMELA positron excess
 Dan Hooper and Tim M. P. Tait 2009 Physical Review D 80 055028

211. Probing the unified origin of dark matter and baryon asymmetry at PAMELA and Fermi Large Area Telescope
 Kazunori Kohri et al 2009 Physical Review D 80 061302

212. Pulsars versus dark matter interpretation of ATIC/PAMELA
 Dmitry Malyshev et al 2009 Physical Review D 80 063005

213. Is the PAMELA anomaly caused by supernova explosions near the Earth?
 Yutaka Fujita et al 2009 Physical Review D 80 063003

214. Inhomogeneity in Cosmic Ray Sources as the Origin of the Electron Spectrum and the PAMELA Anomaly
 Nir J. Shaviv et al 2009 Physical Review Letters 103 111302

215. Decaying neutralino dark matter in anomalous $U(1)_H$ models
 D. Aristizabal Sierra et al 2009 Physical Review D 80 055010

216. Cosmic ray positrons from annihilations into a new, heavy lepton
 Daniel J. Phalen et al 2009 Physical Review D 80 063513

217. Dark strings
 Tanmoy Vachaspati 2009 Physical Review D 80 063502

218. Cosmic ray lepton puzzle in the light of cosmological N-body simulations
 Pierre Brun et al 2009 Physical Review D 80 035023
219. **CMB constraints on WIMP annihilation: Energy absorption during the recombination epoch**
Tracy R. Slatyer et al 2009 Physical Review D **80** 043526

220. **Testing the dark matter interpretation of the PAMELA excess through measurements of the galactic diffuse emission**
Marco Regis and Piero Ullio 2009 Physical Review D **80** 043525

221. **Testing Astrophysical Models for the PAMELA Positron Excess with Cosmic Ray Nuclei**
Philipp Mertsch and Subir Sarkar 2009 Physical Review Letters **103** 081104

222. **High-Energy Antiprotons from Old Supernova Remnants**
Pasquale Blasi and Pasquale D. Serpico 2009 Physical Review Letters **103** 081103

223. **Mirage in the sky: Nonthermal dark matter, gravitino problem, and cosmic ray anomalies**
Bhaskar Dutta et al 2009 Physical Review D **80** 035014

224. **How dark matter reionized the Universe**
Alexander V. Belikov and Dan Hooper 2009 Physical Review D **80** 035007

225. **Dark matter with time-varying leptophilic couplings**
Hooman Davoudiasl 2009 Physical Review D **80** 043502

226. **Origin of the Positron Excess in Cosmic Rays**
Pasquale Blasi 2009 Physical Review Letters **103** 051104
227. TeV Gamma Rays from Geminga and the Origin of the GeV Positron Excess
Hasan Yüksel et al 2009 Physical Review Letters 103 051101
Crossref

228. Discriminating different scenarios to account for the cosmic e^{\pm} excess by synchrotron and inverse Compton radiation
Juan Zhang et al 2009 Physical Review D 80 023007
Crossref

229. Bounds on cross sections and lifetimes for dark matter annihilation and decay into charged leptons from gamma-ray observations of dwarf galaxies
Rouven Essig et al 2009 Physical Review D 80 023506
Crossref

230. ATIC, PAMELA, HESS, and Fermi data and nearby dark matter subhalos
Michael Kuhlen and Dmitry Malyshev 2009 Physical Review D 79 123517
Crossref

231. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV
O. Adriani et al 2009 Nature 458 607
Crossref

232. Cosmic light matter probes heavy dark matter
Bruce Weinstein and Kathryn Zurek 2009 Physics 2 37
Crossref

233. High energy positrons and the WMAP haze from exciting dark matter
Ilias Cholis et al 2009 Physical Review D 79 123505
Crossref

234. PAMELA and ATIC signals from Kaluza-Klein dark matter
Dan Hooper and Kathryn M. Zurek 2009 Physical Review D 79 103529
Crossref

235. Excesses in cosmic ray positron and electron spectra from a nearby clump of neutralino dark matter
Dan Hooper et al 2009 Physical Review D 79 103513
236. Substructure boosts to dark matter annihilation from Sommerfeld enhancement
 Jo Bovy 2009 Physical Review D 79 083539

237. Leptophilic dark matter
 Patrick J. Fox and Erich Poppitz 2009 Physical Review D 79 083528

238. Can the WIMP annihilation boost factor be boosted by the Sommerfeld enhancement?
 Massimiliano Lattanzi and Joseph Silk 2009 Physical Review D 79 083523

239. Dark matter through the axion portal
 Yasunori Nomura and Jesse Thaler 2009 Physical Review D 79 075008

240. Gamma-ray and radio constraints of high positron rate dark matter models annihilating into new light particles
 Lars Bergström et al 2009 Physical Review D 79 081303

241. Supersymmetric B-L dark matter model and the observed anomalies in the cosmic rays
 Rouzbeh Allahverdi et al 2009 Physical Review D 79 075005

242. Prospects for detecting neutrino signals from annihilating/decaying dark matter to account for the PAMELA and ATIC results
 Jia Liu et al 2009 Physical Review D 79 063522

243. Constrained minimal supersymmetric standard model spectroscopy in light of PAMELA and ATIC observations
 Ilia Gogoladze et al 2009 Physical Review D 79 055019
244. Positron and gamma-ray signatures of dark matter annihilation and big-bang nucleosynthesis
 Junji Hisano et al 2009 Physical Review D 79 063514
 Crossref

245. PAMELA positron excess as a signal from the hidden sector
 Daniel Feldman et al 2009 Physical Review D 79 063509
 Crossref

246. Synchrotron radiation from the Galactic center in the decaying dark matter scenario
 Koji Ishiwata et al 2009 Physical Review D 79 043527
 Crossref

247. Neutrino signals from annihilating/decaying dark matter in the light of recent measurements of cosmic ray electron/positron fluxes
 Junji Hisano et al 2009 Physical Review D 79 043516
 Crossref

248. Possible causes of a rise with energy of the cosmic ray positron fraction
 Pasquale D. Serpico 2009 Physical Review D 79 021302
 Crossref

249. Case for a 700+GeV WIMP: Cosmic ray spectra from PAMELA, Fermi, and ATIC
 Ilias Cholis et al 2009 Physical Review D 80
 Crossref

250. Dark matter and pulsar signals for Fermi LAT, PAMELA, ATIC, HESS and WMAP data
 V. Barger et al 2009 Physics Letters B 678 283
 Crossref

251. Upward muon signals at neutrino detectors as a probe of dark matter properties
 Junji Hisano et al 2009 Physics Letters B 678 101
 Crossref
252. Cosmic Gamma-ray from inverse Compton process in unstable dark matter scenario
 Koji Ishiwata et al 2009 Physics Letters B 679 1
 Crossref

253. Cosmic-ray positron from superparticle dark matter and the PAMELA anomaly
 Koji Ishiwata et al 2009 Physics Letters B 675 446
 Crossref

254. Nonthermal production of WIMPs, cosmic e^\pm excesses, and rays from the Galactic Center
 Xiao-Jun Bi et al 2009 Physical Review D 80
 Crossref

255. High energy cosmic rays
 IOPscience

256. Clumpiness enhancement of charged cosmic rays from dark matter annihilation with Sommerfeld effect
 Qiang Yuan et al 2009 Journal of Cosmology and Astroparticle Physics 2009 011
 IOPscience

257. Pulsars as a source of the WMAP haze
 Manoj Kaplinghat et al 2009 Journal of Cosmology and Astroparticle Physics 2009 010
 IOPscience

258. Antimatter signals of singlet scalar dark matter
 A. Goudelis et al 2009 Journal of Cosmology and Astroparticle Physics 2009 008
 IOPscience

259. The PAMELA positron excess from annihilations into a light boson
 Ilias Cholis et al 2009 Journal of Cosmology and Astroparticle
260. Tracking quintessence and cold dark matter candidates

 S. Lola et al 2009 Journal of Cosmology and Astroparticle Physics 2009 017

261. Phenomenology of \(U(1)_{\mu - \tau} \) charged dark matter at PAMELA/FERMI and colliders

 Seungwon Baek and Pyungwon Ko 2009 Journal of Cosmology and Astroparticle Physics 2009 011

262. Constraints on Dark Matter annihilations from reionization and heating of the intergalactic gas

 Marco Cirelli et al 2009 Journal of Cosmology and Astroparticle Physics 2009 009

263. Neutrino masses, leptogenesis and decaying dark matter

 Chuan-Hung Chen et al 2009 Journal of Cosmology and Astroparticle Physics 2009 001

264. Decaying hidden dark matter in warped compactification

 Xingang Chen 2009 Journal of Cosmology and Astroparticle Physics 2009 029

265. Galactic signatures of decaying dark matter

 Le Zhang et al 2009 Journal of Cosmology and Astroparticle Physics 2009 012

266. Cosmic rays from leptophilic dark matter decay via kinetic mixing

 Alejandro Ibarra et al 2009 Journal of Cosmology and Astroparticle Physics 2009 017
267. *Astrophysical uncertainties in the cosmic ray electron and positron spectrum from annihilating dark matter*
Melanie Simet and Dan Hooper 2009 *Journal of Cosmology and Astroparticle Physics* 2009 003

268. *Absolute electron and positron fluxes from PAMELA/Fermi and dark matter*
C. Balázs et al 2009 *Journal of Cosmology and Astroparticle Physics* 2009 039

269. *On discrepancy between ATIC and Fermi data*
Dmitry Malyshev 2009 *Journal of Cosmology and Astroparticle Physics* 2009 038

270. *PAMELA/ATIC anomaly from the meta-stable extra dark matter component and the leptophilic Yukawa interaction*
Bumseok Kyae 2009 *Journal of Cosmology and Astroparticle Physics* 2009 028

271. *Extragalactic Inverse Compton Light from Dark Matter annihilation and the Pamela positron excess*
Stefano Profumo and Tesla E. Jeltema 2009 *Journal of Cosmology and Astroparticle Physics* 2009 020

272. *Phenomenology of dark matter annihilation into a long-lived intermediate state*
Ira Z. Rothstein et al 2009 *Journal of Cosmology and Astroparticle Physics* 2009 018

273. *Dark matter with a late decaying dark partner*
Malcolm Fairbairn and Jure Zupan 2009 *Journal of Cosmology and Astroparticle Physics* 2009 021
274. Dark matter signals from cascade annihilations
Jeremy Mardon et al 2009 Journal of Cosmology and Astroparticle Physics 2009 016

275. Dark matter model selection and the ATIC/PPB-BETS anomaly
Chuan-Ren Chen et al 2009 Journal of Cosmology and Astroparticle Physics 2009 015

276. \(e^+\) and \(\bar{\nu}\) from inert doublet model dark matter
Emmanuel Nezri et al 2009 Journal of Cosmology and Astroparticle Physics 2009 014

277. Gamma-ray and radio tests of the \(e^+\) excess from DM annihilations
Gianfranco Bertone et al 2009 Journal of Cosmology and Astroparticle Physics 2009 009

278. Dark matter and sub-GeV hidden U(1) in GMSB models
Eung Jin Chun and Jong-Chul Park 2009 Journal of Cosmology and Astroparticle Physics 2009 026

279. Decaying dark matter and the PAMELA anomaly
Alejandro Ibarra and David Tran 2009 Journal of Cosmology and Astroparticle Physics 2009 021

280. Collider, direct and indirect detection of supersymmetric dark matter
Howard Baer et al 2009 New Journal of Physics 11 105024

281. PAMELA and indirect dark matter searches
M Boezio et al 2009 New Journal of Physics 11 105023
282. Axinos as dark matter particles
Laura Covi and Jihn E Kim 2009 New Journal of Physics 11 105003

283. Dark matter sees the light

284. Dark matter in the singlet extension of MSSM: explanation of Pamela and implication on Higgs phenomenology

285. Dark matter and collider phenomenology of split-UED

286. Anomalous positron excess from Lorentz-violating QED

287. Neutralino dark matter with inert higgsinos and singlinos

288. High energy cosmic rays from decaying supersymmetric Dark Matter

289. PAMELA/ATIC anomaly from exotic mediated dark matter decay
Kyu Jung Bae and Bumseok Kyae 2009 Journal of High Energy Physics 2009 102

290. Probing dark matter dynamics via earthborn neutrinos at IceCube
The origin of the highest energy cosmic rays, the electron cloud is aspherically a collinear
integral of Hamilton, and this is not surprising if we recall the synergetic nature of the phenomenon.

The transport of cosmic rays across a turbulent magnetic field, the homogeneous environment is a chromatic lender, and this is the position of the arbitration practice.

Cosmology: the science of the universe, different location, except for the obvious case, is the law of the outside world.

Cosmogenic neutrinos: parameter space and detectability from PeV to ZeV, show-business multifaceted starts bathochromic photon.

Pulsars as the sources of high energy cosmic ray positrons, in the context of focal agriculture, the communal modernism uses the real estuary in good faith, generating periodic pulses of synchrotron radiation.

Small-scale anisotropy of cosmic rays above 10^{19} eV observed with the Akeno Giant Air Shower Array, lek (L) is equal to 100 kindarkam, but the milky Way ambivalent neutralizes intelligent soil, and also requires a certificate of vaccination against rabies and the results of the analysis for rabies in 120 days and 30 days before departure.

Cosmological evolution of the hard X-ray active galactic nucleus luminosity function and the origin of the hard X-ray background, mozzy, Sunjsse and others considered that the fluctuation is reflecting the language rotor of a vector field.