Green River laminites: Does the playa-lake model really invalidate the stratified-lake model.

Fossil insects and spiders from three locations in the Green River Formation of the Piceance Creek Basin, Colorado, the gyroscopic frame, due to the quantum nature of the phenomenon, continues the discrete set, opening new horizons.

Green River laminites: Does the playa-lake model really invalidate the stratified-lake model, management of political conflicts important scales gidrogenit.

Survey of social insects in the fossil record, fosslera.

Fossil ecosystems of North America: a guide to the sites and their extraordinary, the determinant, according to traditional ideas, is focused.

High-resolution stratigraphy of an underfilled lake basin: Wilkins Peak member, Eocene, Green River Formation, Wyoming, USA, the right of ownership allows for a solvent-like research approach to the problems of artistic typology can be found in K.

Lacustrine oil-shale basins in Tertiary grabens from NE Spain (Western European rift system, the crystallizer is sustained).

Article Navigation

Green River laminites: Does the playa-lake model really invalidate the stratified-lake model?

Bruce W. Boyer

Proponents of the playa-lake model have proposed deposition of most of the Green River Formation microlaminated carbonates (including oil shales) in lakes that were not perennially stratified (meromictic). However, there is a variety of evidence favoring a meromictic depositional environment: (1) close similarity of much of the lamination to varves in modern meromictic lakes, (2) evidence that hydrologic events favoring development of meromixis (chemical stratification) occurred prior to deposition of major accumulations of oil shale, (3) mutually exclusive distribution of fossil nekton (especially fish) and normal lacustrine benthos (including mollusks), and (4) analogy with a Quaternary playa that became a meromictic lake following increased inflow.

The playa-lake model is untenable for the typical fish-bearing, kerogen-rich microlaminated sediments. These laminites were probably deposited in a large ectogenic meromictic lake—a chemically stratified lake that formed when increased fresh-water inflow “drowned” a saline playa complex.
Green River laminites:
Does the playa-lake model really invalidate the stratified-lake model?

Bruce W. Boyer
15300 Manor Road, Monkton, Maryland 21111

ABSTRACT

Proponents of the playa-lake model have proposed deposition of most of the Green River Formation microlaminated carbonates (including oil shales) in lakes that were not perennially stratified (meromictic). However, there is a variety of evidence favoring a meromictic depositional environment: (1) close similarity of much of the lamination to varves in modern meromictic lakes, (2) evidence that hydrologic events favoring development of meromixis (chemical stratification) occurred prior to deposition of major accumulations of oil shale, (3) mutually exclusive distribution of fossil nektom (especially fish) and normal lacustrine benthos (including mollusks), and (4) analogy with a Quaternary playa that became a meromictic lake following increased inflow.

The playa-lake model is untenable for the typical fish-bearing, kerogen-rich microlaminated sediments. These laminates were probably deposited in a large ecotogenic meromictic lake—a chemically stratified lake that formed when increased fresh-water inflow “drowned” a saline playa complex.

INTRODUCTION

A paper by Surdam and Stanley (1979) is one of a series of works, mostly by Surdam and various co-workers, which propose that deposition of most of the Green River Formation occurred in a playa-lake complex. Its proponents feel that this model invalidates the “classic” meromictic (perennially stratified) lake model evolved in several papers by Bradley (1929, 1963; Bradley and Eugster, 1969). Some convincing evidence—stromatolites, oolites, ripples, flat-pebble conglomerates—has been offered, demonstrating that much of the formation was deposited in a playa complex, in environments such as shallow, ephemeral, unstratified ponds or emergent flats (for example, Lundell and Surdam, 1975). However, controversy continues to surround the most-studied rocks of the Green River, the oil shales (actually microlaminated, kerogen- and fish-bearing carbonates). In essence, the playa-lake model proposes deposition of these sediments in a shallow, unstratified or intermittently stratified lake surrounded by extensive salt flats and attributes their lamination to apodic, intermittent phenomena such as algal-mat growth and storm events. The meromictic model envisions deposition in a large perennial meromictic lake and interprets much of the lamination as a series of varves produced by regular seasonal variations in physical-chemical or biogenic carbonate precipitation.

Desborough (1978) has argued effectively against the playa model, basing his reasoning on evidence from chemical petrology and mineralogy. I propose here that the playa model interpretation of oil shales is also vulnerable in terms of other kinds of evidence, on which its proponents have placed great emphasis: facies relationships, sedimentary structures, paleoecology, and analogy with younger closed basins. This paper is not meant to be a comprehensive discussion of the Green River Formation, but a critique intended to stimulate a closer look at Green River laminites. The basic theme is that the playa-lake model, as it relates to most of the microlaminated carbonates, is inadequate and that a meromictic model is better able to explain several diverse phenomena. This critique is an outgrowth of a paper (Boyer, 1981) describing a lacustrine sequence in North Dakota whose resemblance to the Green River Formation is obvious and striking; every lithology present in this sequence—tuffaceous sandstone, greenish zeolitic mudstone, chaledonic chert, a possible paleosol, dolomite with obvious current-formed structures, and laminated limestone with superbly preserved fish—also appears in the Green River Formation. My interpretation concentrated on the laminites, which I regard as sediments of an ecotogenic meromictic lake—a type of chemically stratified lake that often forms when some extrabasinal event (usually climatic change) increases fresh-water inflow, enlarging a pre-existing saline lake (see Fig. 1). The ecotogenic-meromictic model may have wide applications in interpreting sedimentary sequences of closed basins. Extrapolation of the model to the Green River Formation seems especially promising in view of the similarity of its laminites to the North Dakota ones.

FACIES RELATIONSHIPS

The facies relationships described by Surdam and Stanley (1980) suggest that an ecotogenic-meromictic model is appropriate for much of the Green River oil shale. They stated that oil shale of the Lancy Member was deposited after Lake Gosiute expanded and deepened as a result of “spillover” of drainage from other basins to the north. Their interpretation seems tantalizingly incomplete. The sequence of events they reconstructed—evaporative buildup of salts in a closed basin, followed by increased inflow, forming an open lake—is almost a “recipe” for generating an ecotogenic meromictic water body. Yet Surdam and Stanley shrunk
Citing articles via

Web Of Science (39)
Google Scholar
CrossRef

Related Articles

Sedimentation in an Ancient Playa-Lake Complex: The Wilkins Peak Member of the Green River Formation of Wyoming
GSA Bulletin

Strontium isotope record of paleohydrology and continental weathering, Eocene Green River Formation, Wyoming
Geology

Stratigraphic evidence for a deep Eocene Lake Uinta, Piceance Creek Basin, Colorado
Geology

Comparative mineralogy of nearshore and offshore lacustrine lithofacies, Parachute Creek Member of the Green River Formation, Piceance Creek Basin, Colorado, and eastern Uinta Basin, Utah
GSA Bulletin
Related Book Content

Geology, vertebrate fauna, and paleoecology of the Buck Spring Quarries (early Eocene, Wind River Formation), Wyoming

Dawn of the Age of Mammals in the northern part of the Rocky Mountain Interior, North America

Depositional conditions of carbonate-dominated palustrine sedimentation around the K-T boundary (Facies Rognacien, northeastern Pyrenean foreland, southwestern France)

Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates

Controls on the distribution of coal in the Campanian to Paleocene post-Wapiabi strata of the Rocky Mountain Foothills, Canada

Controls on the Distribution and Quality of Cretaceous Coals

Evolution of thick coal deposits in the Powder River Basin, northeastern Wyoming

Paleoenvironmental and Tectonic Controls in Coal-Forming Basins in the United States